Critical clusters in interdependent economic sectors

A data-driven spectral clustering analysis

Abstract

In this paper we develop a data-driven hierarchical clustering methodology to group the economic sectors of a country in order to highlight strongly coupled groups that are weakly coupled with other groups. Specifically, we consider an input-output representation of the coupling among the sectors and we interpret the relation among sectors as a directed graph; then we recursively apply the spectral clustering methodology over the graph, without a priori information on the number of groups that have to be obtained. In order to do this, we resort to the eigengap criterion, where a suitable number of groups is selected automatically based on the intensity and structure of the coupling among the sectors. We validate the proposed methodology considering a case study for Italy, inspecting how the coupling among clusters and sectors changes from the year 1995 to 2011, showing that in the years the Italian structure underwent deep changes, becoming more and more interdependent, i.e., a large part of the economy has become tightly coupled.

References

  1. 1.

    H.B. Chenery, T. Watanabe, Econometrica 26, 487 (1958)

    Article  Google Scholar 

  2. 2.

    R. Setola, Int. J. Sys. Sys. Eng. 2, 38 (2010)

    Article  Google Scholar 

  3. 3.

    G. Oliva, R. Setola, K. Barker, Reliability, IEEE Transactions 63, 42 (2014)

    Article  Google Scholar 

  4. 4.

    W. Leontief, Input-Output Economies (Oxford University Press, New York, 1966)

  5. 5.

    Y.Y. Haimes, B.M. Horowitz, J.H. Lambert, J.R. Santos, C. Lian, K.G. Crowther, J. Infrastructure Sys. 11, 67 (2005)

    Article  Google Scholar 

  6. 6.

    M.P. Timmer, E. Dietzenbacher, B. Los, R. Stehrer, G.J. Vries, Rev. Int. Economics 23, 575 (2015)

    Article  Google Scholar 

  7. 7.

    G. Oliva, S. Panzieri, R. Setola, 10th International Conference on Critical Information Infrastructures Security (Berlin, Germany, October 5–7, 2015 (CRITIS2015)), (to appear)

  8. 8.

    J. Hao, J.B. Orlin, J. Algorithms 17, 424 (1994)

    MathSciNet  Article  Google Scholar 

  9. 9.

    M.S. Levine, Experimental Study of Minimum Cut Algorithms (1997)

  10. 10.

    J. Shi, J. Malik, IEEE Transactions on Pattern Anal. Machine Intelligence 22, 905 (2000)

    Google Scholar 

  11. 11.

    S.X. Yu, J. Shi, Proceedings Ninth IEEE International Conference on. Computer Vision, (IEEE, 2003), p. 313

  12. 12.

    J. MacQueen et al., Proc. fifth Berkeley Symp. Math. Stat. Probability 1, 14 (1967)

    Google Scholar 

  13. 13.

    Y. Kim, S.-W. Son, H. Jeong, in Complex Sciences (Springer, 2009), p. 2050

  14. 14.

    E.A. Leicht and M.E. Newman, Phys. Rev. Lett. 100, 118703 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    Y. Kim, S.-W. Son, H. Jeong, Phys. Rev. E, 81, 016103 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    A. Mirzal, M. Furukawa, International Conference on Electronics and Information Engineering (ICEIE), 2010, Vol. 1. (IEEE, 2010), p. V1

  17. 17.

    F.R. Chung, in Spectral Graph Theory (AMS, Providence, 1997), Vol. 92

  18. 18.

    B. Mohar, Some applications of Laplace eigenvalues of graphs (Springer, 1997)

  19. 19.

    L. Kaufman, P.J. Rousseeuw, Finding groups in data: an introduction to cluster analysis (John Wiley & Sons, 2009), Vol. 344

  20. 20.

    T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning (Springer, 2009)

  21. 21.

    G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Scala, A. Tacchella, PloS one 7, e47278 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriele Oliva.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliva, G., Setola, R. & Panzieri, S. Critical clusters in interdependent economic sectors. Eur. Phys. J. Spec. Top. 225, 1929–1944 (2016). https://doi.org/10.1140/epjst/e2015-50321-0

Download citation