The European Physical Journal Special Topics

, Volume 225, Issue 4, pp 779–795

Polymeric nanoparticles assembled with microfluidics for drug delivery across the blood-brain barrier

  • M.R. Tavares
  • L.R. de Menezes
  • D.F. do Nascimento
  • D.H.S. Souza
  • F. Reynaud
  • M.F.V. Marques
  • M.I.B. Tavares
Review
  • 145 Downloads
Part of the following topical collections:
  1. Cooperative Particles: Patchy Colloids, Active Matter and Nanofluids

Abstract

The blood-brain barrier (BBB) is a challenge in the treatment of some diseases, since it prevents many drugs from reaching therapeutic concentrations in the brain. In this context, there is a growing interest in nanoparticles for drug delivery, since they are able to cross this barrier and target the brain. The use of polymeric materials in the development of these nanoparticles has been extensively studied. It has already been demonstrated that these nanosystems have the ability to cross the BBB, which allows effective drug release into the brain. Biodegradable polymers provide a great advantage in the development of nanosystems, but modifications of the nanoparticles’ surface is essential. The traditional batch methods lack precise control over the processes of nucleation and growth, resulting in poor control over final properties of the nanoparticles. Therefore, microfluidics could be used to achieve a better production environment for the fabrication of nano- structured drug delivery systems. This study provides a brief review of: the BBB, the polymeric nanoparticles with the ability to overcome the barrier, the properties of the most used polymeric matrices, and the nanostructured drug delivery systems assembled with microfluidics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Patel, J. Zhou, J.M. Piepmeier, W.M. Saltzman, Adv. Drug Deliv. Rev. 64, 701 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Bicker, G. Alves, A. Fortuna, and A. Falcão, Eur. J. Pharm. Biopharm. 87, 409 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Kreuter, J. Microencapsul. 30, 49 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Kreuter, Adv. Drug Deliv. Rev. 71, 2 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Maiese, Curr. Neurovasc. Res. 11, 187 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Roney, P. Kulkarni, V. Arora, P. Antich, F. Bonte, A. Wu, N.N. Mallikarjuana, S. Manohar, H.F. Liang, A.R. Kulkarni, H.W. Sung, M. Sairam, T.M. Aminabhavi, J. Control. Release 108, 193 (2005)CrossRefGoogle Scholar
  7. 7.
    U. Schroeder, J. Pharm. Sci. 87, 1305 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Wohlfart, S. Gelperina, J. Kreuter, J. Control. Release 161, 264 (2012)CrossRefGoogle Scholar
  9. 9.
    H.L. Wong, X.Y. Wu, R. Bendayan, Adv. Drug Deliv. Rev. 64, 686 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Krol, R. Macrez, F. Docagne, G. Defer, S. Laurent, M. Rahman, M.J. Hajipour, P.G. Kehoe, M. Mahmoudi, Chem. Rev. 113, 1877 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, J. Control. Release 161, 505 (2012)CrossRefGoogle Scholar
  12. 12.
    T.K. Dash, V.B. Konkimalla, J. Control. Release 158, 15 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Kumari, S.K. Yadav, S.C. Yadav, Colloids Surfaces B Biointerfaces 75, 1 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Marre, K.F. Jensen, Chem. Soc. Rev. 39, 1183 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Capretto, D. Carugo, S. Mazzitelli, C. Nastruzzi, X. Zhang, Adv. Drug Deliv. Rev. 65, 1496 (2013)CrossRefGoogle Scholar
  16. 16.
    M. S. Juliana, N.P.C. Natália, M.de O. Adriano, D. Silas, C.S. Antônio, R. Góngora-Rubio, J. Nanomed. Nanotechnol. 04, 4 (2013)Google Scholar
  17. 17.
    C.-H. Chang, B.K. Paul, V.T. Remcho, S. Atre, J.E. Hutchison, J. Nanoparticle Res. 10, 965 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Gao, X. Jiang, Int. J. Pharm. 310, 213 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Xia, X. Gao, G. Gu, Z. Liu, Q. Hu, Y. Tu, Q. Song, L. Yao, Z. Pang, X. Jiang, J. Chen, H. Chen, Int. J. Pharm. 436, 840 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Gaumet, A. Vargas, R. Gurny, F. Delie, Eur. J. Pharm. Biopharm. 69, 1 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Orlu-Gul, A.A. Topcu, T. Shams, S. Mahalingam, M. Edirisinghe, Curr. Opin. Pharmacol. 18, 28 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Chem. Soc. Rev. 42, 1147 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Bramini, D. Ye, A. Hallerbach, M. Nic Raghnaill, A. Salvati, C. Åberg, K. a. Dawson, ACS Nano 8, 4304 (2014)CrossRefGoogle Scholar
  24. 24.
    Q.T.H. Shubhra, J. Tóth, J. Gyenis, T. Feczkó, Polym. Rev. 54, 112 (2014)CrossRefGoogle Scholar
  25. 25.
    V.P. Torchilin, Adv. Drug Deliv. Rev. 64, 302 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Angew. Chemie – Int. Ed. 49, 6288 (2010)CrossRefGoogle Scholar
  27. 27.
    Y.Y. Yang, T.S. Chung, N. Ping Ng, Biomaterials 22, 231 (2001)CrossRefGoogle Scholar
  28. 28.
    H.K. Makadia, S.J. Siegel, Polymers (Basel). 3, 1377 (2011)CrossRefGoogle Scholar
  29. 29.
    C. Engineer, J. Parikh, A. Raval, Trends Biomater. Artif. Organs 25, 79 (2011)Google Scholar
  30. 30.
    O. Pillai, R. Panchagnula, Curr. Opin. Chem. Biol. 5, 447 (2001)CrossRefGoogle Scholar
  31. 31.
    R. Chandra, R. Rustgi, Prog. Polym. Sci. 23, 1273 (1998)CrossRefGoogle Scholar
  32. 32.
    J. Panyam, M.M. Dali, S.K. Sahoo, W. Ma, S.S. Chakravarthi, G.L. Amidon, R.J. Levy, V. Labhasetwar, J. Control. Release 92, 173 (2003)CrossRefGoogle Scholar
  33. 33.
    B.D. Ulery, L.S. Nair, C.T. Laurencin, J. Polym. Sci. Part B Polym. Phys. 49, 832 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    D.F. Do Nascimento, A.C. Silva, C.R.E. Mansur, R.D.F. Presgrave, E.N. Alves, R.S. Silva, E. Ricci-Júnior, Z.M.F. de Freitas, E.P. Dos Santos, J. Nanosci. Nanotechnol. 12, 7155 (2012)CrossRefGoogle Scholar
  35. 35.
    A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini, R. Maciel, Biotechnol. Adv. 30, 321 (2012)CrossRefGoogle Scholar
  36. 36.
    R.M. Rasal, A.V Janorkar, D.E. Hirt, Prog. Polym. Sci. 35, 338 (2010)CrossRefGoogle Scholar
  37. 37.
    F. Yao, W.J. Kao., Expert Opin. Drug Deliv. 7, 429 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Zheng, B. Kan, M. Gou, S. Fu, J. Zhang, K. Men, L. Chen, F. Luo, Y. Zhao, X. Zhao, Y. Wei, Z. Qian, Int. J. Pharm. 386, 262 (2010)CrossRefGoogle Scholar
  39. 39.
    C.W. Gan, S.S. Feng, Biomaterials 31, 7748 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Labet, W. Thielemans, Chem. Soc. Rev. 38, 3484 (2009)CrossRefGoogle Scholar
  41. 41.
    A.R. Pohlmann, F.N. Fonseca, K. Paese, C.B. Detoni, K. Coradini, R.C.R. Beck, S.S. Guterres, 1 (2013)Google Scholar
  42. 42.
    L. Gutiérrez-Paúls, I. González-Álvarez, M. Lareo Barone, M.E. Gil-Alegre, a.I. Torres-Suárez, Pharmazie 62, 864 (2007)Google Scholar
  43. 43.
    H. Xin, X. Jiang, J. Gu, X. Sha, L. Chen, K. Law, Y. Chen, X. Wang, Y. Jiang, X. Fang, Biomaterials 32, 4293 (2011)CrossRefGoogle Scholar
  44. 44.
    S. Kumar, T. Nann, Small 2, 316 (2006)CrossRefGoogle Scholar
  45. 45.
    a.K. Popov, J. Brummer, R.S. Tanke, G. Taft, a. Wruck, M. Loth, R. Langlois, R. Schmitz, 127, 2817 (2005)Google Scholar
  46. 46.
    Y. Song, J. Hormes, C.S.S.R. Kumar, Small 4, 698 (2008)CrossRefGoogle Scholar
  47. 47.
    D. Qi, D.J. Hoelzle, a.C. Rowat, Eur. Phys. J. Special Topics 204, 85 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    A. Merlin, J. Angly, L. Daubersies, C. Madeira, S. Schöder, J. Leng, J.-B. Salmon, Eur. Phys. J. E 34, 58 (2011)CrossRefGoogle Scholar
  49. 49.
    C. Ybert, F. Nadal, R. Salome, F. Argoul, L. Bourdieu, Eur. Phys. J. E 16, 259 (2005)CrossRefGoogle Scholar
  50. 50.
    G.M. Whitesides, Nature 442, 368 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    P. Watts, S.J. Haswell, Curr. Opin. Chem. Biol. 7, 380 (2003)CrossRefGoogle Scholar
  52. 52.
    W.-Y. Lin, Y. Wang, S. Wang, H.-R. Tseng, Nano Today 4, 470 (2009)CrossRefGoogle Scholar
  53. 53.
    J.-M. Prot, O. Videau, C. Brochot, C. Legallais, H. Bénech, E. Leclerc, Int. J. Pharm. 408, 67 (2011)CrossRefGoogle Scholar
  54. 54.
    M.R. Thorson, S. Goyal, B.R. Schudel, C.F. Zukoski, G.G.Z. Zhang, Y. Gong, P.J. a Kenis, Lab Chip 11, 3829 (2011)CrossRefGoogle Scholar
  55. 55.
    K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chemie Int. Ed. 48, 872 (2009)CrossRefGoogle Scholar
  56. 56.
    D. Carugo, L. Capretto, S. Willis, A.L. Lewis, D. Grey, M. Hill, X. Zhang, Biomed. Microdevices 14, 153 (2012)CrossRefGoogle Scholar
  57. 57.
    J. Il Park, A. Saffari, S. Kumar, A. Günther, E. Kumacheva, Annu. Rev. Mater. Res. 40, 415 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    L. Capretto, S. Mazzitelli, E. Brognara, D. Carugo, M. Hill, R. Gambari, C. Nastruzzi, 307 (2012)Google Scholar
  59. 59.
    P. Khadka, J. Ro, H. Kim, I. Kim, J.T. Kim, H. Kim, J.M. Cho, G. Yun, J. Lee, Asian J. Pharm. Sci. 9, 304 (2014)CrossRefGoogle Scholar
  60. 60.
    S.M. D’Addio, R.K. Prud’homme, Adv. Drug Deliv. Rev. 63, 417 (2011)CrossRefGoogle Scholar
  61. 61.
    H. Wang, H. Nakamura, M. Uehara, M. Miyazaki, H. Maeda, Chem. Commun., 1462 (2002)Google Scholar
  62. 62.
    I. Shestopalov, J.D. Tice, R.F. Ismagilov, Lab Chip 4, 316 (2004)CrossRefGoogle Scholar
  63. 63.
    H.S.M. Ali, P. York, N. Blagden, Int. J. Pharm. 375, 107 (2009)CrossRefGoogle Scholar
  64. 64.
    H. Cui, Z. Chen, S. Zhong, K.L. Wooley, D.J. Pochan, Science (80-.). 317, 647 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    B.K. Johnson, R.K. Prud’homme, Phys. Rev. Lett. 91, 118302 (2003)ADSCrossRefGoogle Scholar
  66. 66.
    J. Thiele, D. Steinhauser, T. Pfohl, S. Förster, Langmuir 26, 6860 (2010)CrossRefGoogle Scholar
  67. 67.
    I.U. Khan, C.A. Serra, N. Anton, Expert Opin. Drug Deliv. 12, 1 (2014)CrossRefGoogle Scholar
  68. 68.
    M. Rhee, P.M. Valencia, M.I. Rodriguez, R. Langer, O.C. Farokhzad, R. Karnik, Adv. Mater. 23, 79 (2011)CrossRefGoogle Scholar
  69. 69.
    R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad, Nano Lett. 8, 2906 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    P.M. Valencia, P.a. Basto, L. Zhang, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik, ACS Nano 4, 1671 (2010)CrossRefGoogle Scholar
  71. 71.
    D. Wu, Y. Luo, X. Zhou, Z. Dai, B. Lin, Electrophoresis 26, 211 (2005)CrossRefGoogle Scholar
  72. 72.
    I. Wong, C.M. Ho, Microfluid. Nanofluidics 7, 291 (2009)CrossRefGoogle Scholar
  73. 73.
    a. Beletsi, Z. Panagi, K. Avgoustakis, Int. J. Pharm. 298, 233 (2005)CrossRefGoogle Scholar
  74. 74.
    H.K. Cho, I.W. Cheong, J.M. Lee, J.H. Kim, Korean J. Chem. Eng. 27, 731 (2010)CrossRefGoogle Scholar
  75. 75.
    P.M. Valencia, E.M. Pridgen, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik, ACS Nano 7, 10671 (2013)CrossRefGoogle Scholar
  76. 76.
    J.M. Lim, A. Swami, L.M. Gilson, S. Chopra, S. Choi, J. Wu, R. Langer, R. Karnik, O.C. Farokhzad, ACS Nano 8, 6056 (2014)CrossRefGoogle Scholar
  77. 77.
    R. Othman, G.T. Vladisavljević, Z.K. Nagy, Chem. Eng. Sci. 137, 119 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M.R. Tavares
    • 1
  • L.R. de Menezes
    • 1
  • D.F. do Nascimento
    • 1
    • 2
  • D.H.S. Souza
    • 1
  • F. Reynaud
    • 3
  • M.F.V. Marques
    • 1
  • M.I.B. Tavares
    • 1
  1. 1.Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrasil
  3. 3.Faculdade de Farmácia, Universidade Federal do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations