Local vs. global redundancy – trade-offs between resilience against cascading failures and frequency stability

Regular Article
Part of the following topical collections:
  1. Health, Energy & Extreme Events in a Changing Climate

Abstract

When designing or extending electricity grids, both frequency stability and resilience against cascading failures have to be considered amongst other aspects of energy security and economics such as construction costs due to total line length. Here, we compare an improved simulation model for cascading failures with state-of-the-art simulation models for short-term grid dynamics. Random ensembles of realistic power grid topologies are generated using a recent model that allows for a tuning of global vs local redundancy. The former can be measured by the algebraic connectivity of the network, whereas the latter can be measured by the networks transitivity. We show that, while frequency stability of an electricity grid benefits from a global form of redundancy, resilience against cascading failures rather requires a more local form of redundancy and further analyse the corresponding trade-off.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    50hertz, http://www.50hertz.com/Netzlast/Karte/index.html (accessed: 08.06.2015)
  2. 2.
    S.V. Buldyrev, et al., Nature, 464, 1025 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Carreras, et al., Chaos 12, 985 (2002)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    T. Dewenter, A.K. Hartmann, New J. Phys. 17, 015005 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    J.F. Donges, Ph.D. thesis, Humboldt University, Berlin, Germany, 2012Google Scholar
  7. 7.
    F. Dörfler, F. Bullo, SIAM J. Control and Optimization 50, 1616 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S.C. Srivastava, A. Velayutham, A.S. Bakshi, http://www.cea.nic.in/reports/articles/god/grid_disturbance_report.pdf (accessed: 27.04.2015)
  9. 9.
  10. 10.
    G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C. Folke, Global Environmental Change 16, 253 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Gajduk, M. Todorovski, L. Kocarev, The Euro. Phys. J. Spec. Top. 223, 2387 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Gao, et al., Phys. Rev. Lett. 107, 195701 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J.J. Grainger, W.D. Stevenson, Vol. 31 (New York: McGraw-Hill, 1994)Google Scholar
  15. 15.
    F. Hellmann, et al., arXiv preprint [arXiv:1506.01257] (2015)
  16. 16.
    C.S. Holling, Ann. Rev. Ecology and Systematics 4, 1 (1973)CrossRefGoogle Scholar
  17. 17.
    P. Holme, et al., Phys. Rev. E 65, 056109 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Intergovernmental Panel on Climate Change, http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf (accessed: 27.04.2015)
  19. 19.
    J.C. Kile, et al., Prehospital, Florian, and disaster medicine 20, 93 (2005)Google Scholar
  20. 20.
    J. Machowski, J. Bialek, J. Bumby (John Wiley & Sons, 2011)Google Scholar
  21. 21.
    P.J. Menck, et al., Nat. Phys. 9, 89 (2013)CrossRefGoogle Scholar
  22. 22.
    P.J. Menck, et al., Nat. Commu. 5, 3969 (2013)Google Scholar
  23. 23.
    A.E. Motter, Y.-C. Lai, Phys. Rev. E 66, 065102 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    D.E. Newman, et al., IEEE Transactions on 60, 134 (2011)Google Scholar
  25. 25.
    T. Nishikawa, A.E. Motter, New J. Phys. 17, 15012 (2015)CrossRefGoogle Scholar
  26. 26.
    Renewable Energy Policy Network for the 21st Century, http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf (accessed: 27.04.2015)
  27. 27.
    M. Rohden, et al., Phys. Rev. Lett. 109, 064101 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    K. Schmietendorf, et al., Eur. Phys. J. Special Topics 223, 2577 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P. Schultz, J. Heitzig, J. Kurths, Eur. Phys. J. Special Topics 223, 2593 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    P. Schultz, J. Heitzig, J. Kurths, New J. Phys. 16, 125001 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    I. Simonsen, et al., Phys. Rev. Lett. 100, 218701 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    R.V. Solé, et al., Phys. Rev. E 77, 026102 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Union for the Co-ordination of Transmission of Electricity, http://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf (accessed: 27.04.2015)
  34. 34.
    D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Institute of Physics, Humboldt University of BerlinBerlinGermany
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Institute for Complex Systems and Mathematical Biology, University of AberdeenAberdeenUK
  4. 4.Department of Control TheoryNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations