On the convergence of the Fitness-Complexity algorithm

Abstract

We investigate the convergence properties of an algorithm which has been recently proposed to measure the competitiveness of countries and the quality of their exported products. These quantities are called respectively Fitness F and Complexity Q. The algorithm was originally based on the adjacency matrix M of the bipartite network connecting countries with the products they export, but can be applied to any bipartite network. The structure of the adjacency matrix turns to be essential to determine which countries and products converge to non zero values of F and Q. Also the speed of convergence to zero depends on the matrix structure. A major role is played by the shape of the ordered matrix and, in particular, only those matrices whose diagonal does not cross the empty part are guaranteed to have non zero values as outputs when the algorithm reaches the fixed point. We prove this result analytically for simplified structures of the matrix, and numerically for real cases. Finally, we propose some practical indications to take into account our results when the algorithm is applied.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli, L. Pietronero, Sci. Rep. 2, 723 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    R.C. Feenstra, R.E. Lipsey, H. Deng, A.C. Ma, H. Mo, World trade flows: 1962–2000. Technical report (National Bureau of Economic Research, 2005)

  3. 3.

    G. Gaulier, S. Zignago, Baci: International trade database at the product-level. Centre d’Etudes Prospectives et d’Informations Internationales (2010), http://www.cepii.fr/anglaisgraph/workpap/pdf/2010/wp2010-23.pdf

  4. 4.

    B. Balassa, Manchester School 33, 99 (1965)

    Article  Google Scholar 

  5. 5.

    M. Cristelli, A. Gabrielli, A. Tacchella, G. Caldarelli, L. Pietronero, PLoS ONE 8, e70726 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    R.J. Barro, X. Sala-i Martin, Economic Growth (MIT Press, 2004)

  7. 7.

    G. Caldarelli, Scale-free Networks: Complex Cebs in Nature and Technology (Oxford University Press, 2004)

  8. 8.

    S. Brin, L. Page, in Computer Networks and ISDN Systems (1998), p. 107

  9. 9.

    C. Hidalgo, R. Hausmann, Proc. Natl. Acad. Sci. USA, 106, 10570 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    D. Ricardo, On the Principles of Political Economy and Taxation (John Murray, 1817)

  11. 11.

    A. Zaccaria, M. Cristelli, R. Kupers, A. Tacchella, L. Pietronero, J. Econom. Interact. Coord. 11, 151 (2016)

    Article  Google Scholar 

  12. 12.

    A. Zaccaria, M. Cristelli, A. Tacchella, L. Pietronero, PLoS ONE 9, e113770 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    E. Pugliese, G.L. Chiarotti, A. Zaccaria, L. Pietronero, Complex economies have a lateral escape from the poverty trap [arXiv:1511.08622] (2015)

  14. 14.

    M. Cristelli, A. Tacchella, L. Pietronero. PLoS ONE 10, e0117174 (2015)

    Article  Google Scholar 

  15. 15.

    M. Cristelli, A. Tacchella, A. Zaccaria, L. Pietronero, Growth Scenarios for Sub-Saharan Countries in the Framework of Economic Complexity (2015) https://mpra.ub.uni-muenchen.de/71594/

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Zaccaria.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pugliese, E., Zaccaria, A. & Pietronero, L. On the convergence of the Fitness-Complexity algorithm. Eur. Phys. J. Spec. Top. 225, 1893–1911 (2016). https://doi.org/10.1140/epjst/e2015-50118-1

Download citation