Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 10, pp 1893–1911 | Cite as

On the convergence of the Fitness-Complexity algorithm

  • Emanuele Pugliese
  • Andrea Zaccaria
  • Luciano Pietronero
Regular Article Algorithm
Part of the following topical collections:
  1. Complex, Inter-networked Economic and Social Systems

Abstract

We investigate the convergence properties of an algorithm which has been recently proposed to measure the competitiveness of countries and the quality of their exported products. These quantities are called respectively Fitness F and Complexity Q. The algorithm was originally based on the adjacency matrix M of the bipartite network connecting countries with the products they export, but can be applied to any bipartite network. The structure of the adjacency matrix turns to be essential to determine which countries and products converge to non zero values of F and Q. Also the speed of convergence to zero depends on the matrix structure. A major role is played by the shape of the ordered matrix and, in particular, only those matrices whose diagonal does not cross the empty part are guaranteed to have non zero values as outputs when the algorithm reaches the fixed point. We prove this result analytically for simplified structures of the matrix, and numerically for real cases. Finally, we propose some practical indications to take into account our results when the algorithm is applied.

References

  1. 1.
    A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli, L. Pietronero, Sci. Rep. 2, 723 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    R.C. Feenstra, R.E. Lipsey, H. Deng, A.C. Ma, H. Mo, World trade flows: 1962–2000. Technical report (National Bureau of Economic Research, 2005)Google Scholar
  3. 3.
    G. Gaulier, S. Zignago, Baci: International trade database at the product-level. Centre d’Etudes Prospectives et d’Informations Internationales (2010), http://www.cepii.fr/anglaisgraph/workpap/pdf/2010/wp2010-23.pdf
  4. 4.
    B. Balassa, Manchester School 33, 99 (1965)CrossRefGoogle Scholar
  5. 5.
    M. Cristelli, A. Gabrielli, A. Tacchella, G. Caldarelli, L. Pietronero, PLoS ONE 8, e70726 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Barro, X. Sala-i Martin, Economic Growth (MIT Press, 2004)Google Scholar
  7. 7.
    G. Caldarelli, Scale-free Networks: Complex Cebs in Nature and Technology (Oxford University Press, 2004)Google Scholar
  8. 8.
    S. Brin, L. Page, in Computer Networks and ISDN Systems (1998), p. 107Google Scholar
  9. 9.
    C. Hidalgo, R. Hausmann, Proc. Natl. Acad. Sci. USA, 106, 10570 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Ricardo, On the Principles of Political Economy and Taxation (John Murray, 1817)Google Scholar
  11. 11.
    A. Zaccaria, M. Cristelli, R. Kupers, A. Tacchella, L. Pietronero, J. Econom. Interact. Coord. 11, 151 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Zaccaria, M. Cristelli, A. Tacchella, L. Pietronero, PLoS ONE 9, e113770 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    E. Pugliese, G.L. Chiarotti, A. Zaccaria, L. Pietronero, Complex economies have a lateral escape from the poverty trap [arXiv:1511.08622] (2015)
  14. 14.
    M. Cristelli, A. Tacchella, L. Pietronero. PLoS ONE 10, e0117174 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Cristelli, A. Tacchella, A. Zaccaria, L. Pietronero, Growth Scenarios for Sub-Saharan Countries in the Framework of Economic Complexity (2015) https://mpra.ub.uni-muenchen.de/71594/

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Emanuele Pugliese
    • 1
    • 2
  • Andrea Zaccaria
    • 1
    • 2
  • Luciano Pietronero
    • 2
    • 1
  1. 1.Istituto dei Sistemi Complessi, via dei Taurini 19RomaItaly
  2. 2.Sapienza Università di Roma, Piazzale Aldo Moro 2RomaItaly

Personalised recommendations