Forecasting in the presence of expectations


Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model–it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

This is a preview of subscription content, access via your institution.


  1. 1.

    J.E. Bickel, S.D. Kim, Monthly Weather Review 136, 4867 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    M.A. Cane, S.E. Zebiak, S.C. Dolan, Nature (1986)

  3. 3.

    C. Chamley, Rational herds: Economic models of social learning (Cambridge University Press, 2004)

  4. 4.

    D. Chen, M.A. Cane, S.E. Zebiak, R. Canizares, A. Kaplan, Geophys. Res. Lett. 27, 2585 (2000)

    ADS  Article  Google Scholar 

  5. 5.

    B.I. Cook, T.R. Ault, J.E. Smerdon, Sci. Adv. 1, 1 (2015)

    Google Scholar 

  6. 6.

    V.P. Crawford, J. Sobel, Econometrica: J. Econometric Soc., 1431 (1982)

  7. 7.

    M. Gentzkow, E. Kamenica, Competition in Persuasion (2015)

  8. 8.

    J.D. Hamilton, Time Series Analysis, 1st edition (Princeton University Press, 1994)

  9. 9.

    R. Hornbeck, P. Keskin, Amer. Econ. J.: Appl. Econ. 6, 190 (2014)

    Google Scholar 

  10. 10.

    IBISWorld, Clear skies: Niche services and mobile apps are forecast to drive industry demand IBISWorld Industry Report OD5752 Weather Forecasting Services in the US About this Industry, Technical Report (2012)

  11. 11.

    E. Kamenica, M. Gentzkow, Amer. Econ. Rev. 101, 2590 (2011)

    Article  Google Scholar 

  12. 12.

    C.R. Nelson, S.C. Peck, J. Business & Econ. Stat. 3, 179 (1985)

    Google Scholar 

  13. 13.

    A.J. Patton, A. Timmermann, J. Business & Econ. Stat. 30, 1 (2012)

    MathSciNet  Article  Google Scholar 

  14. 14.

    A.J. Pershing, M.A. Alexander, C.M. Hernandez, L.A. Kerr, A. Le Bris, K.E. Mills, J.A. Nye, N.R. Record, H.A. Scannell, J.D. Scott, G.D. Sherwood, A.C. Thomas, Science, aac9819 (2015)

  15. 15.

    M. Rosenzweig, C.R. Udry, Forecasting Profitability (2013)

  16. 16.

    S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Yu.-T. Hou, H.-Ya. Chuang, M. Iredell, et al., J. Climate 27, 2185 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    J. Shrader, Working paper (2015)

  18. 18.

    N. Silver, The Signal and the Noise: Why so many predictions fail – but some don’t, 1st edition (Penguin: New York, NY, USA, 2012)

  19. 19.

    A. Timmermann, C.W.J. Granger, Int. J. Forecast. 20, 15 (2004)

    Article  Google Scholar 

  20. 20.

    United States Department of Agriculture, Irrigation & Water Use (2015)

  21. 21.

    X. Yuan, E.F. Wood, Geophys. Res. Lett. 40, 4900 (2013)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Shrader.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allen, R., Zivin, J. & Shrader, J. Forecasting in the presence of expectations. Eur. Phys. J. Spec. Top. 225, 539–550 (2016).

Download citation