Skip to main content
Log in

Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

  • Regular Article
  • Applied Physics and Robotics
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Bert, M. Malik, Appl. Mech. Rev. 49, 1 (1996)

    Article  ADS  Google Scholar 

  2. Y. Cha, M. Verotti, H. Walcott, S. Peterson, M. Porfiri, Bioinspir. Biomimet. 8, 3 (2013)

    Article  Google Scholar 

  3. Y. Chen, J. Appl. Mech. 30, 310 (1963)

    Article  ADS  Google Scholar 

  4. W. Coral, et al., Smart Actuation and Sensing Systems – Recent Advances and Future Challenges. Chapter 3, SMA-Based Muscle-Like Actuation in Biologically Inspired Robots: A State of the Art Review (INTECH, 2012), p. 53

  5. M.A. De Rosa, C. Franciosi, M.J. Maurizi, Comp. Struct. 58, 1145 (1955)

    Article  Google Scholar 

  6. H. Du, M.K. Lim, N.R. Lin, Inter. J. Numer. Meth. Eng. 37, 1881 (1994)

    Article  MathSciNet  Google Scholar 

  7. H. Du, M.K. Lim, N.R. Lin, J. Sound Vibr. 181, 279 (1995)

    Article  ADS  Google Scholar 

  8. M. Gurgoze, J. Sound Vibr. 96, 461 (1984)

    Article  ADS  Google Scholar 

  9. M. Gurgoze, J. Sound Vibr. 100, 588 (1985)

    Article  ADS  Google Scholar 

  10. T. Kaneko, J. Phys. D: Appl. Phys. 8, 1928 (1975)

    Article  ADS  Google Scholar 

  11. G. Karami, P. Malekzadeh, Comp. Meth. Appl. Mech. Eng. 191, 3509 (2002)

    Article  Google Scholar 

  12. P. Laura, M.J. Maurizi, J.L. Pombo, J. Sound Vibr. 41, 397 (1975)

    Article  ADS  Google Scholar 

  13. P. Laura, P.L. Verniere de Irassar, G.M. Ficcadenti, J. Sound Vibr. 86, 279 (1983)

    Article  ADS  Google Scholar 

  14. S.Y. Lee, S.M. Lin, J. Sound Vibr. 183, 403 (1995)

    Article  ADS  Google Scholar 

  15. R.M. Lin, M.K. Lim, H. Du, Comput. Struct. 53, 993 (1994)

    Article  Google Scholar 

  16. W.H. Liu, J.R. Wu, C.C. Huang, J. Sound Vibr. 122, 193 (1988)

    Article  ADS  Google Scholar 

  17. G.V. Rao, K.M. Saheb, G.R. Janardhan, J. Sound Vibr. 298, 221 (2006)

    Article  ADS  Google Scholar 

  18. C. Rossi, W. Coral, et al., Bioinspir. Biomimet. 6, 15 (2011)

    Article  Google Scholar 

  19. C. Rossi, W. Coral, et al., A Motor-less and Gear-less Bio-mimetic Robotic Fish Design, 2011 IEEE International Conference on Robotics and Automation (2011)

  20. S. Timoshenko, D.H. Young, W. Weaver, Vibration problems in engineering (Wiley, New York, 1974)

  21. M. Aureli, V. Kopman, M. Porfiri, Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Transactions on 15(4), 603 (2010)

    Google Scholar 

  22. P. Phamduy, R. LeGrand, M. Porfiri, Robotics & Automation Magazine, IEEE 22(1), 86 (2015)

    Article  Google Scholar 

  23. Tracker, Video Analysis and Modelling Tool, http://physlets.org/tracker/ (accessed September 10, 2015)

  24. W.-H. Chu, Technical Report No. 2, DTMB, Contract NObs-86396(X), Southwest Research Institute (San Antonio, Texas, 1963)

  25. U.S. Lindholm, D.D. Kana, W.-H. Chu, H.N. Abramson, J. Ship. Res. 9, 11 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Coral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coral, W., Rossi, C. & Curet, O. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses. Eur. Phys. J. Spec. Top. 224, 3379–3392 (2015). https://doi.org/10.1140/epjst/e2015-50021-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50021-3

Keywords

Navigation