Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal Special Topics
  3. Article

BASE – The Baryon Antibaryon Symmetry Experiment

  • Review
  • Open access
  • Published: 23 November 2015
  • volume 224, pages 3055–3108 (2015)
Download PDF

You have full access to this open access article

The European Physical Journal Special Topics Aims and scope Submit manuscript
BASE – The Baryon Antibaryon Symmetry Experiment
Download PDF
  • C. Smorra1,2,
  • K. Blaum3,
  • L. Bojtar2,
  • M. Borchert4,
  • K.A. Franke3,
  • T. Higuchi1,5,
  • N. Leefer6,
  • H. Nagahama1,5,
  • Y. Matsuda5,
  • A. Mooser1,
  • M. Niemann4,
  • C. Ospelkaus4,8,
  • W. Quint9,10,
  • G. Schneider7,
  • S. Sellner1,
  • T. Tanaka5,
  • S. Van Gorp11,
  • J. Walz5,6,
  • Y. Yamazaki11 &
  • …
  • S. Ulmer1 
  • 1522 Accesses

  • 47 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

Abstract

The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10−9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. B. Schwingenheuer, et al., Phys. Rev. Lett. 74, 4376 (1995)

    Article  ADS  Google Scholar 

  2. K.A. Olive, et al., Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  3. R.S. Van Dyck, et al., Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  4. H. Dehmelt, et al., Phys. Rev. Lett. 83, 4694 (1999)

    Article  ADS  Google Scholar 

  5. D. Hanneke, et al., Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  6. G.W. Bennett, et al., Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  7. G.W. Bennett, et al., Phys. Rev. Lett. 100, 091602 (2008)

    Article  ADS  Google Scholar 

  8. H. Davoudiasl, et al., Phys. Rev. D 89, 095006 (2014)

    Article  ADS  Google Scholar 

  9. N. Arkani-Hamed, et al., Phys. Rev. D 79, 015014 (2009)

    Article  ADS  Google Scholar 

  10. J. Grange, et al., [arXiv:1501.06858] [physics.ins-det], (2015)

  11. T. Mibe, et al., Chin. Phys. C 34, 745 (2010)

    Article  Google Scholar 

  12. G. Gabrielse, et al., Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  13. S. Ulmer, et al., Nature 524, 196 (2015)

    Article  ADS  Google Scholar 

  14. G. Gabrielse, et al., Phys. Rev. Lett. 74, 3544 (1995)

    Article  ADS  Google Scholar 

  15. J.K. Thompson, et al., Nature 430, 58 (2004)

    Article  ADS  Google Scholar 

  16. G. Gabrielse, et al., Int. J. Mass Spectr. 251, 273 (2006)

    Article  Google Scholar 

  17. C. Smorra, et al., Int. J. Mass Spectr. (accepted) (2015)

  18. E.A. Cornell, et al., Phys. Rev. A 41, 312 (1990)

    Article  ADS  Google Scholar 

  19. H. Dehmelt, et al., Phys. Rev. Lett. 83, 4694 (1999)

    Article  ADS  Google Scholar 

  20. A. Colladay, et al., Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  21. S. Maury, Hyp. Int. 109, 43 (1999)

    Article  ADS  Google Scholar 

  22. C. Amole, et al., Nucl. Instr. Meth. A 735, 319 (2014)

    Article  ADS  Google Scholar 

  23. ASACUSA Collaboration, http://asacusa.web.cern.ch/ASACUSA/

  24. ATRAP Collaboration, http://gabrielse.physics.harvard.edu/

  25. C.G. Parthey, et al., Phys. Rev. Lett. 107, 203001 (2011)

    Article  ADS  Google Scholar 

  26. C.L. Cesar, et al., Phys. Rev. Lett. 77, 255 (1996)

    Article  ADS  Google Scholar 

  27. L. Essen, et al., Nature 229, 110 (1971)

    Article  ADS  Google Scholar 

  28. C. Amole, et al., Nature 483, 439 (2012)

    Article  ADS  Google Scholar 

  29. N. Kuroda, et al., Nature Comm. 5, 3089 (2014)

    Article  ADS  Google Scholar 

  30. H. Dehmelt, P. Ekström, Bull. Am. Phys. Soc. 18, 72 (1973)

    Google Scholar 

  31. S. Ulmer, et al., Phys. Rev. Lett. 106, 253001 (2011)

    Article  ADS  Google Scholar 

  32. C.C. Rodegheri, et al., N. J. Phys. 14, 063011 (2012)

    Article  Google Scholar 

  33. J. DiSciacca, G. Gabrielse, Phys. Rev. Lett. 108, 153001 (2012)

    Article  ADS  Google Scholar 

  34. A. Mooser, et al., Phys. Rev. Lett. 110, 140405 (2013)

    Article  ADS  Google Scholar 

  35. A. Mooser, et al., Phys. Lett. B 723, 78 (2013)

    Article  ADS  Google Scholar 

  36. A. Mooser, et al., Nature 509, 596 (2014)

    Article  ADS  Google Scholar 

  37. J. DiSciacca, et al., Phys. Rev. Lett. 110, 130801 (2013)

    Article  ADS  Google Scholar 

  38. H. Häffner, et al., Eur. Phys. J. D - At. Mol. Opt. Plas. Phys. 22, 163 (2003)

    ADS  Google Scholar 

  39. P.F. Winkler, et al., Phys. Rev. A 5, 83 (1972)

    Article  ADS  Google Scholar 

  40. T. Pask, et al., Phys. Lett. B 678, 55 (2009)

    Article  ADS  Google Scholar 

  41. A. Kostelecky, et al., Phys. Rev. Lett. 80, 1818 (1998)

    Article  ADS  Google Scholar 

  42. R. Bluhm, et al., Phys. Rev. D 57, 3932 (1998)

    Article  ADS  Google Scholar 

  43. S. Ulmer, et al., J. Phys. Conf. Ser. 488, 012033 (2014)

    Article  ADS  Google Scholar 

  44. C. Smorra, et al., Hyp. Int. 228, 31 (2014)

    Article  Google Scholar 

  45. D.J. Wineland, H.G. Dehmelt, J. Appl. Phys. 46, 919 (1975)

    Article  ADS  Google Scholar 

  46. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  47. G. Gabrielse, et al., Int. J. Mass Spec. 88, 319 (1989)

    Article  ADS  Google Scholar 

  48. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  49. L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)

    Article  ADS  Google Scholar 

  50. S. Ulmer, et al., Phys. Rev. Lett. 107, 103002 (2011)

    Article  ADS  Google Scholar 

  51. H. Häffner, et al., Phys. Rev. Lett. 85, 5308 (2000)

    Article  ADS  Google Scholar 

  52. J. Verdù, et al., Phys. Rev. Lett. 92, 093002 (2004)

    Article  ADS  Google Scholar 

  53. S. Sturm, et al., Phys. Rev. A 87, 030501 (2013)

    Article  ADS  Google Scholar 

  54. L.S. Brown, Phys. Rev. Lett. 52, 2013 (1984)

    Article  ADS  Google Scholar 

  55. L.S. Brown, Ann. Phys. 159, 62 (1985)

    Article  ADS  Google Scholar 

  56. Q.A. Turchette, et al., Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  57. J.F. Goodwin, et al., [arXiv:1407.6121] [physics, physics:quant-ph] (2014)

  58. D.A. Hite, et al., Phys. Rev. Lett. 109, 103001 (2012)

    Article  ADS  Google Scholar 

  59. D.A. Hite, et al., MRS Bull. 38, 826 (2013)

    Article  Google Scholar 

  60. A. Safavi-Naini, et al., Phys. Rev. A 84, 023412 (2011)

    Article  ADS  Google Scholar 

  61. B. D*Urso, et al., Phys. Rev. Lett. 90, 043001 (2003)

    Article  ADS  Google Scholar 

  62. M. Benedikt, et al., LHC Design Report, CERN-2004-003-V-3 (2004)

  63. G. Gabrielse, et al., J. Appl. Phys. 63(10), 15 (1986)

    Google Scholar 

  64. R.S. Van Dyck Jr., et al., Rev. Sci. Instrum. 70, 1665 (1999)

    Article  ADS  Google Scholar 

  65. J. Repp, et al., Appl. Phys. B 107, 983 (2012)

    Article  ADS  Google Scholar 

  66. J. Thompson, et al., J. Sci. Vac. Technol. 14, 643 (1977)

    Article  ADS  Google Scholar 

  67. M.H. Holzscheiter, Physica Scripta 46, 272 (1992)

    Article  ADS  Google Scholar 

  68. J.F. Ziegler, J. Appl. Phys. 85, 1249 (1999)

    Article  ADS  Google Scholar 

  69. G. Gabrielse, et al., Phys. Rev. A 40, 481 (1989)

    Article  ADS  Google Scholar 

  70. G. Gabrielse, et al., Int. J. Mass Spec. 88, 319 (1989)

    Article  ADS  Google Scholar 

  71. S. Djekic, et al., Eur. Phys. J. D 31, 451 (2004)

    Article  ADS  Google Scholar 

  72. G. Gabrielse, et al., Phys. Rev. Lett. 63, 1360 (1989)

    Article  ADS  Google Scholar 

  73. S. Ulmer, et al., Rev. Sci. Inst. 80, 123302 (2009)

    Article  ADS  Google Scholar 

  74. S. Ulmer, et al., Phys. Rev. Lett. 107, 103002 (2011)

    Article  ADS  Google Scholar 

  75. S. Ulmer, et al., Nucl. Instr. Meth. A 705, 55 (2013)

    Article  ADS  Google Scholar 

  76. H. Dehmelt, et al., Proc. Nat. Acad. Sci. 83, 5761 (1986)

    Article  ADS  Google Scholar 

  77. B. D*Urso, et al., Phys. Rev. Lett. 94, 113002 (2005)

    Article  ADS  Google Scholar 

  78. W.W. Macalpine, et al., Proc. IRE 47, 2099 (1959)

    Article  Google Scholar 

  79. G. Gabrielse, et al., Phys. Rev. Lett. 57, 2504 (1986)

    Article  ADS  Google Scholar 

  80. X. Fei, et al., Rev. Sci. Instr. 58, 2197 (1987)

    Article  ADS  Google Scholar 

  81. G. Gräff, et al., Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  82. E.A. Cornell, et al., Phys. Rev. Lett. 63, 1674 (1989)

    Article  ADS  Google Scholar 

  83. S. Stahl, et al., J. Phys. B 38, 297 (2005)

    Article  ADS  Google Scholar 

  84. S. Sturm, et al., Phys. Rev. Lett. 107, 143003 (2011)

    Article  ADS  Google Scholar 

  85. S. Eliseev, et al., Appl. Phys. B 114, 107 (2014)

    Article  ADS  Google Scholar 

  86. S. Streubel, et al., Appl. Phys. B 114, 137 (2014)

    Article  ADS  Google Scholar 

  87. E.G. Myers, et al., Phys. Rev. Lett. 114, 013003 (2015)

    Article  ADS  Google Scholar 

  88. R. Bluhm, et al., Phys. Rev. Lett. 79, 1432 (1997)

    Article  ADS  Google Scholar 

  89. S. Mavadia, et al., Phys. Rev. A 89, 032502 (2014)

    Article  ADS  Google Scholar 

  90. M. Niemann, et al., doi: 10.1142/9789814566438_0011 (2013)

  91. D.J. Wineland, et al., Phys. Rev. A 42, 2977 (1990)

    Article  ADS  Google Scholar 

  92. D.J. Wineland, et al., Quantum Computers and Atomic Clocks, in Proc. 2001 Freq. Stand. Metrology Symp. (2001), p. 361

  93. C.W. Chou, et al., Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  94. P.O. Schmidt, et al., Science 309, 749 (2005)

    Article  ADS  Google Scholar 

  95. N. Daniilidis, et al., J. Phys. B 42, 154012 (2009)

    Article  ADS  Google Scholar 

  96. J.M. Cornejo, D. Rodrguez, Adv. High Energy Phys. 2012 (2012)

  97. D.J. Wineland, et al., J. Res. NIST 103, 259 (1998)

    Article  Google Scholar 

  98. K.R. Brown, et al., Nature 471, 196 (2011)

    Article  ADS  Google Scholar 

  99. M. Harlander, et al., Nature 471, 200 (2011)

    Article  ADS  Google Scholar 

  100. Q.A. Turchette, et al., Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  101. L. Deslauriers, et al., Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  102. A. Nikiel, et al., Eur. Phys. J. D 68, 330 (2014)

    Article  ADS  Google Scholar 

  103. J.L. Flowers, et al., Metrologia 30, 75 (1993)

    Article  ADS  Google Scholar 

  104. W.D. Phillips, et al., Metrologia 13, 179 (1977)

    Article  ADS  Google Scholar 

  105. P.J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012)

    Article  ADS  Google Scholar 

  106. T. Chupp, (private communication) (2013)

  107. R.S. Van Dyck, Phys. Scripta 46, 257 (1992)

    Article  ADS  Google Scholar 

  108. S. Ulmer, et al., Nature 524, 196, Supplementary Material (2015)

    Article  ADS  Google Scholar 

  109. F. DiFilippo, et al., Phys. Scr. T 59, 144 (1995)

    Article  ADS  Google Scholar 

  110. R.S. Van Dyck, et al., AIP Conf. Proc. 457, 101 (1999)

    Article  ADS  Google Scholar 

  111. A. Solders, et al., Phys. Rev. A 78, 012514 (2008)

    Article  ADS  Google Scholar 

  112. M. Hori, et al., Nature 475, 484 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Ulmer Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

    C. Smorra, T. Higuchi, H. Nagahama, A. Mooser, S. Sellner & S. Ulmer

  2. CERN, 1211, Geneva 23, Switzerland

    C. Smorra & L. Bojtar

  3. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany

    K. Blaum & K.A. Franke

  4. Institute of Quantum Optics, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany

    M. Borchert, M. Niemann & C. Ospelkaus

  5. Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan

    T. Higuchi, H. Nagahama, Y. Matsuda, T. Tanaka & J. Walz

  6. Helmholtz-Institut Mainz, 55099, Mainz, Germany

    N. Leefer & J. Walz

  7. Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany

    G. Schneider

  8. Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany

    C. Ospelkaus

  9. GSI-Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany

    W. Quint

  10. Ruprecht-Karls-Universität Heidelberg, 69047, Heidelberg, Germany

    W. Quint

  11. Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

    S. Van Gorp & Y. Yamazaki

Authors
  1. C. Smorra
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. Blaum
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. L. Bojtar
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. M. Borchert
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. K.A. Franke
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. T. Higuchi
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. N. Leefer
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. H. Nagahama
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Y. Matsuda
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. A. Mooser
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. M. Niemann
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. C. Ospelkaus
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. W. Quint
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. G. Schneider
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. S. Sellner
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. T. Tanaka
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. S. Van Gorp
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. J. Walz
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. Y. Yamazaki
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. S. Ulmer
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to C. Smorra.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smorra, C., Blaum, K., Bojtar, L. et al. BASE – The Baryon Antibaryon Symmetry Experiment. Eur. Phys. J. Spec. Top. 224, 3055–3108 (2015). https://doi.org/10.1140/epjst/e2015-02607-4

Download citation

  • Received: 21 September 2015

  • Revised: 01 October 2015

  • Published: 23 November 2015

  • Issue Date: November 2015

  • DOI: https://doi.org/10.1140/epjst/e2015-02607-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • European Physical Journal Special Topic
  • Cyclotron Frequency
  • Antihydrogen
  • Axial Frequency
  • Trap Electrode
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

BASE - The Baryon Antibaryon Symmetry Experiment

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature