The European Physical Journal Special Topics

, Volume 224, Issue 16, pp 3055–3108 | Cite as

BASE – The Baryon Antibaryon Symmetry Experiment

  • C. Smorra
  • K. Blaum
  • L. Bojtar
  • M. Borchert
  • K.A. Franke
  • T. Higuchi
  • N. Leefer
  • H. Nagahama
  • Y. Matsuda
  • A. Mooser
  • M. Niemann
  • C. Ospelkaus
  • W. Quint
  • G. Schneider
  • S. Sellner
  • T. Tanaka
  • S. Van Gorp
  • J. Walz
  • Y. Yamazaki
  • S. Ulmer
Open Access
Review
Part of the following topical collections:
  1. BASE - The Baryon Antibaryon Symmetry Experiment

Abstract

The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10−9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.

References

  1. 1.
    B. Schwingenheuer, et al., Phys. Rev. Lett. 74, 4376 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    K.A. Olive, et al., Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    R.S. Van Dyck, et al., Phys. Rev. Lett. 59, 26 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    H. Dehmelt, et al., Phys. Rev. Lett. 83, 4694 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    D. Hanneke, et al., Phys. Rev. Lett. 100, 120801 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    G.W. Bennett, et al., Phys. Rev. D 73, 072003 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    G.W. Bennett, et al., Phys. Rev. Lett. 100, 091602 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    H. Davoudiasl, et al., Phys. Rev. D 89, 095006 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    N. Arkani-Hamed, et al., Phys. Rev. D 79, 015014 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. Grange, et al., [arXiv:1501.06858] [physics.ins-det], (2015)
  11. 11.
    T. Mibe, et al., Chin. Phys. C 34, 745 (2010)CrossRefGoogle Scholar
  12. 12.
    G. Gabrielse, et al., Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    S. Ulmer, et al., Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    G. Gabrielse, et al., Phys. Rev. Lett. 74, 3544 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    J.K. Thompson, et al., Nature 430, 58 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    G. Gabrielse, et al., Int. J. Mass Spectr. 251, 273 (2006)CrossRefGoogle Scholar
  17. 17.
    C. Smorra, et al., Int. J. Mass Spectr. (accepted) (2015)Google Scholar
  18. 18.
    E.A. Cornell, et al., Phys. Rev. A 41, 312 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    H. Dehmelt, et al., Phys. Rev. Lett. 83, 4694 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    A. Colladay, et al., Phys. Rev. D 58, 116002 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    S. Maury, Hyp. Int. 109, 43 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    C. Amole, et al., Nucl. Instr. Meth. A 735, 319 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    ASACUSA Collaboration, http://asacusa.web.cern.ch/ASACUSA/
  24. 24.
  25. 25.
    C.G. Parthey, et al., Phys. Rev. Lett. 107, 203001 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C.L. Cesar, et al., Phys. Rev. Lett. 77, 255 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    L. Essen, et al., Nature 229, 110 (1971)ADSCrossRefGoogle Scholar
  28. 28.
    C. Amole, et al., Nature 483, 439 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    N. Kuroda, et al., Nature Comm. 5, 3089 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    H. Dehmelt, P. Ekström, Bull. Am. Phys. Soc. 18, 72 (1973)Google Scholar
  31. 31.
    S. Ulmer, et al., Phys. Rev. Lett. 106, 253001 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    C.C. Rodegheri, et al., N. J. Phys. 14, 063011 (2012)CrossRefGoogle Scholar
  33. 33.
    J. DiSciacca, G. Gabrielse, Phys. Rev. Lett. 108, 153001 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A. Mooser, et al., Phys. Rev. Lett. 110, 140405 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    A. Mooser, et al., Phys. Lett. B 723, 78 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    A. Mooser, et al., Nature 509, 596 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    J. DiSciacca, et al., Phys. Rev. Lett. 110, 130801 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    H. Häffner, et al., Eur. Phys. J. D - At. Mol. Opt. Plas. Phys. 22, 163 (2003)ADSGoogle Scholar
  39. 39.
    P.F. Winkler, et al., Phys. Rev. A 5, 83 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    T. Pask, et al., Phys. Lett. B 678, 55 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Kostelecky, et al., Phys. Rev. Lett. 80, 1818 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    R. Bluhm, et al., Phys. Rev. D 57, 3932 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    S. Ulmer, et al., J. Phys. Conf. Ser. 488, 012033 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    C. Smorra, et al., Hyp. Int. 228, 31 (2014)CrossRefGoogle Scholar
  45. 45.
    D.J. Wineland, H.G. Dehmelt, J. Appl. Phys. 46, 919 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    G. Gabrielse, et al., Int. J. Mass Spec. 88, 319 (1989)ADSCrossRefGoogle Scholar
  48. 48.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  50. 50.
    S. Ulmer, et al., Phys. Rev. Lett. 107, 103002 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    H. Häffner, et al., Phys. Rev. Lett. 85, 5308 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    J. Verdù, et al., Phys. Rev. Lett. 92, 093002 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    S. Sturm, et al., Phys. Rev. A 87, 030501 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    L.S. Brown, Phys. Rev. Lett. 52, 2013 (1984)ADSCrossRefGoogle Scholar
  55. 55.
    L.S. Brown, Ann. Phys. 159, 62 (1985)ADSCrossRefGoogle Scholar
  56. 56.
    Q.A. Turchette, et al., Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    J.F. Goodwin, et al., [arXiv:1407.6121] [physics, physics:quant-ph] (2014)
  58. 58.
    D.A. Hite, et al., Phys. Rev. Lett. 109, 103001 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    D.A. Hite, et al., MRS Bull. 38, 826 (2013)CrossRefGoogle Scholar
  60. 60.
    A. Safavi-Naini, et al., Phys. Rev. A 84, 023412 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    B. D*Urso, et al., Phys. Rev. Lett. 90, 043001 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    M. Benedikt, et al., LHC Design Report, CERN-2004-003-V-3 (2004)Google Scholar
  63. 63.
    G. Gabrielse, et al., J. Appl. Phys. 63(10), 15 (1986)Google Scholar
  64. 64.
    R.S. Van Dyck Jr., et al., Rev. Sci. Instrum. 70, 1665 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    J. Repp, et al., Appl. Phys. B 107, 983 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    J. Thompson, et al., J. Sci. Vac. Technol. 14, 643 (1977)ADSCrossRefGoogle Scholar
  67. 67.
    M.H. Holzscheiter, Physica Scripta 46, 272 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    J.F. Ziegler, J. Appl. Phys. 85, 1249 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    G. Gabrielse, et al., Phys. Rev. A 40, 481 (1989)ADSCrossRefGoogle Scholar
  70. 70.
    G. Gabrielse, et al., Int. J. Mass Spec. 88, 319 (1989)ADSCrossRefGoogle Scholar
  71. 71.
    S. Djekic, et al., Eur. Phys. J. D 31, 451 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    G. Gabrielse, et al., Phys. Rev. Lett. 63, 1360 (1989)ADSCrossRefGoogle Scholar
  73. 73.
    S. Ulmer, et al., Rev. Sci. Inst. 80, 123302 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    S. Ulmer, et al., Phys. Rev. Lett. 107, 103002 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    S. Ulmer, et al., Nucl. Instr. Meth. A 705, 55 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    H. Dehmelt, et al., Proc. Nat. Acad. Sci. 83, 5761 (1986)ADSCrossRefGoogle Scholar
  77. 77.
    B. D*Urso, et al., Phys. Rev. Lett. 94, 113002 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    W.W. Macalpine, et al., Proc. IRE 47, 2099 (1959)CrossRefGoogle Scholar
  79. 79.
    G. Gabrielse, et al., Phys. Rev. Lett. 57, 2504 (1986)ADSCrossRefGoogle Scholar
  80. 80.
    X. Fei, et al., Rev. Sci. Instr. 58, 2197 (1987)ADSCrossRefGoogle Scholar
  81. 81.
    G. Gräff, et al., Z. Phys. A 297, 35 (1980)ADSCrossRefGoogle Scholar
  82. 82.
    E.A. Cornell, et al., Phys. Rev. Lett. 63, 1674 (1989)ADSCrossRefGoogle Scholar
  83. 83.
    S. Stahl, et al., J. Phys. B 38, 297 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    S. Sturm, et al., Phys. Rev. Lett. 107, 143003 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    S. Eliseev, et al., Appl. Phys. B 114, 107 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    S. Streubel, et al., Appl. Phys. B 114, 137 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    E.G. Myers, et al., Phys. Rev. Lett. 114, 013003 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    R. Bluhm, et al., Phys. Rev. Lett. 79, 1432 (1997)ADSCrossRefGoogle Scholar
  89. 89.
    S. Mavadia, et al., Phys. Rev. A 89, 032502 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    M. Niemann, et al., doi: 10.1142/9789814566438_0011 (2013)Google Scholar
  91. 91.
    D.J. Wineland, et al., Phys. Rev. A 42, 2977 (1990)ADSCrossRefGoogle Scholar
  92. 92.
    D.J. Wineland, et al., Quantum Computers and Atomic Clocks, in Proc. 2001 Freq. Stand. Metrology Symp. (2001), p. 361Google Scholar
  93. 93.
    C.W. Chou, et al., Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    P.O. Schmidt, et al., Science 309, 749 (2005)ADSCrossRefGoogle Scholar
  95. 95.
    N. Daniilidis, et al., J. Phys. B 42, 154012 (2009)ADSCrossRefGoogle Scholar
  96. 96.
    J.M. Cornejo, D. Rodrguez, Adv. High Energy Phys. 2012 (2012)Google Scholar
  97. 97.
    D.J. Wineland, et al., J. Res. NIST 103, 259 (1998)CrossRefGoogle Scholar
  98. 98.
    K.R. Brown, et al., Nature 471, 196 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    M. Harlander, et al., Nature 471, 200 (2011)ADSCrossRefGoogle Scholar
  100. 100.
    Q.A. Turchette, et al., Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  101. 101.
    L. Deslauriers, et al., Phys. Rev. Lett. 97, 103007 (2006)ADSCrossRefGoogle Scholar
  102. 102.
    A. Nikiel, et al., Eur. Phys. J. D 68, 330 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    J.L. Flowers, et al., Metrologia 30, 75 (1993)ADSCrossRefGoogle Scholar
  104. 104.
    W.D. Phillips, et al., Metrologia 13, 179 (1977)ADSCrossRefGoogle Scholar
  105. 105.
    P.J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012)ADSCrossRefGoogle Scholar
  106. 106.
    T. Chupp, (private communication) (2013)Google Scholar
  107. 107.
    R.S. Van Dyck, Phys. Scripta 46, 257 (1992)ADSCrossRefGoogle Scholar
  108. 108.
    S. Ulmer, et al., Nature 524, 196, Supplementary Material (2015)ADSCrossRefGoogle Scholar
  109. 109.
    F. DiFilippo, et al., Phys. Scr. T 59, 144 (1995)ADSCrossRefGoogle Scholar
  110. 110.
    R.S. Van Dyck, et al., AIP Conf. Proc. 457, 101 (1999)ADSCrossRefGoogle Scholar
  111. 111.
    A. Solders, et al., Phys. Rev. A 78, 012514 (2008)ADSCrossRefGoogle Scholar
  112. 112.
    M. Hori, et al., Nature 475, 484 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • C. Smorra
    • 1
    • 2
  • K. Blaum
    • 3
  • L. Bojtar
    • 2
  • M. Borchert
    • 4
  • K.A. Franke
    • 3
  • T. Higuchi
    • 1
    • 5
  • N. Leefer
    • 6
  • H. Nagahama
    • 1
    • 5
  • Y. Matsuda
    • 5
  • A. Mooser
    • 1
  • M. Niemann
    • 4
  • C. Ospelkaus
    • 4
    • 8
  • W. Quint
    • 9
    • 10
  • G. Schneider
    • 7
  • S. Sellner
    • 1
  • T. Tanaka
    • 5
  • S. Van Gorp
    • 11
  • J. Walz
    • 5
    • 6
  • Y. Yamazaki
    • 11
  • S. Ulmer
    • 1
  1. 1.Ulmer Initiative Research Unit, RIKENWakoJapan
  2. 2.CERNGeneva 23Switzerland
  3. 3.Max-Planck-Institut für KernphysikHeidelbergGermany
  4. 4.Institute of Quantum Optics, Leibniz Universität HannoverHannoverGermany
  5. 5.Graduate School of Arts and Sciences, University of TokyoMeguro-ku, TokyoJapan
  6. 6.Helmholtz-Institut MainzMainzGermany
  7. 7.Institut für Physik, Johannes Gutenberg-Universität MainzMainzGermany
  8. 8.Physikalisch-Technische BundesanstaltBraunschweigGermany
  9. 9.GSI-Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  10. 10.Ruprecht-Karls-Universität HeidelbergHeidelbergGermany
  11. 11.Atomic Physics Laboratory, RIKENWakoJapan

Personalised recommendations