Skip to main content

Advertisement

Log in

Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations

  • Regular Article
  • Dynamics of Hybrid Energy Harvesters
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Modeling and comparative analysis of galloping-based hybrid piezoelectric-inductive energy harvesting systems are investigated. Both piezoelectric and electromagnetic transducers are attached to the transverse degree of freedom of the prismatic structure in order to harvest energy from two possible sources. A fully-coupled electroaeroelastic model is developed which takes into account the coupling between the generated voltage from the piezoelectric transducer, the induced current from the electromagnetic transducer, and the transverse displacement of the bluff body. A nonlinear quasi-steady approximation is employed to model the galloping force. To determine the influences of the external load resistances that are connected to the piezoelectric and electromagnetic circuits on the onset speed of galloping, a deep linear analysis is performed. It is found that the external load resistances in these two circuits have significant effects on the onset speed of galloping of the harvester with the presence of optimum values. To investigate the effects of these transduction mechanisms on the performance of the galloping energy harvester, a nonlinear analysis is performed. Using the normal form of the Hopf bifurcation, it is demonstrated that the hybrid energy harvester has a supercritical instability for different values of the external load resistances. For well-defined wind speed and external load resistance in the electromagnetic circuit, the results showed that there is a range of external load resistances in the piezoelectric circuit at which the output power generated by the electromagnetic induction is very small. On the other hand, there are two optimal load resistances at which the output power by the piezoelectric transducer is maximum. Based on a comparative study, it is demonstrated the hybrid piezoelectric-inductive energy harvester is very beneficial in terms of having two sources of energy. However, compared to the classical piezoelectric and electromagnetic energy harvesters, the results show that, considering a hybrid energy harvester leads to an increase in the onset speed of galloping and a decrease in the levels of the harvested power in both the piezoelectric and electromagnetic circuits which is explained by the additional resistive shunt damping effects in the hybrid energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Muralt, J. Micromech. Microeng. 10, 136 (2000)

    Article  ADS  Google Scholar 

  2. S.P. Gurav, A. Kasyap, M. Sheplak, L. Cattafesta, R.T. Haftka, J.F.L. Goosen, F.V. Keulen, Proceedings 10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference, 3559 (2004)

  3. D.J. Inman, B.L. Grisso, Smart Struct. Mater. Conf. SPIE 6174, 61740T (2006)

    Article  ADS  Google Scholar 

  4. A. Abdelkefi, M. Ghommem, Theor. Appl. Mech. Lett. 3, 052001 (2013)

    Article  Google Scholar 

  5. N. Sharpes, A. Abdelkefi, S. Priya, Ener. Harv. Syst. 1, 209 (2014)

    Google Scholar 

  6. H.A. Sodano, G. Park, D.J. Inman, Shock Vib. Dig. 36, 197 (2004)

    Article  Google Scholar 

  7. S. Priya, J. Electrocera. 19, 167 (2007)

    Article  Google Scholar 

  8. S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, 1 (2007)

    Article  ADS  Google Scholar 

  9. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  10. A. Abdelkefi, F. Najar, A.H. Nayfeh, S. Ben Ayed, Smart Mater. Struct. 20, 115007 (2011)

    Article  ADS  Google Scholar 

  11. A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 67, 1147 (2011)

    Article  MathSciNet  Google Scholar 

  12. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, L.W. Lees, G. Litak, J. Intel. Mater. Syst. Struct. 23, 1505 (2012)

    Article  Google Scholar 

  13. M. Bryant, E. Garcia, Proceedings of SPIE 7493, 74931W (2009)

    Article  ADS  Google Scholar 

  14. A. Erturk, W.G.R. Vieira, C. De Marqui, D.J. Inman, Appl. Phys. Lett. 96, 184103 (2010)

    Article  ADS  Google Scholar 

  15. C. De Marqui, A. Erturk, D.J. Inman, J. Intel. Mater. Syst. Struct. 21, 983 (2010)

    Article  Google Scholar 

  16. H.D. Akaydin, N. Elvin, Y. Andrepoulos, Smart Mater. Struct. 21, 025007 (2012)

    Article  ADS  Google Scholar 

  17. H.L. Dai, A. Abdelkefi, L. Wang, J. Intel. Mater. Sys. Struct. 25, 1861 (2014)

    Article  Google Scholar 

  18. H.L. Dai, A. Abdelkefi, L. Wang, Nonlinear Dyn. 77, 967 (2014)

    Article  MathSciNet  Google Scholar 

  19. J. Sirohi, R. Mahadik, J. Intel. Mater. Syst. Struct. 22, 2215 (2011)

    Article  Google Scholar 

  20. A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Smart Mater. Struct. 22, 015014 (2013)

    Article  ADS  Google Scholar 

  21. A. Abdelkefi, Z. Yan, M.R. Hajj, The Eur. Phys. J. Special Topics 222, 1483 (2013)

    Article  ADS  Google Scholar 

  22. Y. Yang, L. Zhao, L. Tang, Appl. Phys. Lett. 102, 064105 (2013)

    Article  ADS  Google Scholar 

  23. A. Bibo, M. Daqaq, Appl. Phys. Lett. 104, 023901 (2014)

    Article  ADS  Google Scholar 

  24. H.J. Jung, S.W. Lee, Smart Mater. Struct. 20, 055022 (2011)

    Article  ADS  Google Scholar 

  25. A. Abdelkefi, A. Hasanyan, J. Montgomery, D. Hall, M.R. Hajj, Theor. Appl. Mech. Lett. 4, 022002 (2014)

    Article  Google Scholar 

  26. A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 67, 925 (2011)

    Article  MathSciNet  Google Scholar 

  27. A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Nonlinear Dyn. 70, 1377 (2012)

    Article  MathSciNet  Google Scholar 

  28. J. Sirohi, R. Mahadik, ASME J. Vib. Acoust. 134, 1 (2012)

    Article  Google Scholar 

  29. A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Nonlinear Dyn. 70, 1355 (2012)

    Article  MathSciNet  Google Scholar 

  30. A. Abdelkefi, Z. Yan, M.R. Hajj, Smart Mater. Struct. 22(2), 025016 (2013)

    Article  ADS  Google Scholar 

  31. A. Abdelkefi, Z. Yan, M.R. Hajj, J. Intel. Mater. Syst. Struct. 25, 246 (2014)

    Article  Google Scholar 

  32. D. Zhu, S. Beeby, J. Tudor, N. White, N. Harris, Proc. IEEE Sens. Kona, HI 1, 1415 (2010)

    Google Scholar 

  33. C. De Marqui, A. Erturk, J. Intel. Mater. Syst. Struct. 24, 846 (2012)

    Google Scholar 

  34. J.A.C. Dias, C. De Marqui, A. Erturk, AIAA J. (2014)

  35. J.A.C. Dias, C. De Marqui, A. Erturk, Appl. Phys. Lett. 102, 044101 (2013)

    Article  ADS  Google Scholar 

  36. M. Ali, M. Arafa, M. Elaraby, Proc. World Cong. Eng., WCE , London, UK 3, 5 (2013)

    Google Scholar 

  37. D. Vicente-Ludlam, A. Barrero-Gil, A. Velazquez, J. Flui. Struct. (2014) http://dx.doi.org/10.1016/j.jfluidstructs.2014.09.007i

  38. H.L. Dai, A. Abdelkefi, U. Javed, L. Wang, Smart Mater. Struct. 24, 045012 (2015)

    Article  ADS  Google Scholar 

  39. R.D. Belvins, Flow-Induced Vibration Malabar (FL: Krieger, 1990)

  40. A. Barrero-Gil, G. Alonso, A. Sanz-Andres, J. Soun. Vib. 329, 2873 (2010)

    Article  ADS  Google Scholar 

  41. G.V. Parkinson, J.D. Smith, Q. J. Mech. Appl. Math. 17, 225 (1964)

    Article  Google Scholar 

  42. J.D. Kraus, Electromagnetics (McGraw-Hill), p. 420

  43. A.H. Nayfeh, Method of Normal Forms (Wiley Interscience, Berlin, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Javed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, U., Dai, H. & Abdelkefi, A. Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations. Eur. Phys. J. Spec. Top. 224, 2929–2948 (2015). https://doi.org/10.1140/epjst/e2015-02599-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02599-y

Keywords

Navigation