Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2919–2927 | Cite as

Nonlinear analysis of an electrodynamic broadband energy harvester

  • S. BradaiEmail author
  • S. Naifar
  • C. Viehweger
  • O. Kanoun
  • G. Litak
Open Access
Regular Article Electromagnetic Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

In order to maximize energy from ambient vibration sources, wide band harvesters working at a range of frequencies are important. This paper presents an electrodynamic energy harvester model working for a frequency band from 25 Hz to 45 Hz. The developed converter consists of a magnetic spring formed by one moving magnet placed between two fixed magnets. A ring magnet is placed around the moving magnet leading to additional nonlinear stiffness to increase the power output. A comparison to a basic configuration electrodynamic converter was carried out by finite element analysis to show that a significant increase in power output was realized. Simulation results have been confirmed by experimental investigations under harmonic excitations. Based on the experimental time series, we have examined the frequency spectrum and phase portraits to identify the dynamic response of the system. In conclusion, the generator is able to harvest 1.5 times more energy than the simple generator for the bandwidth of 20 Hz with the resonant frequency of 35 Hz and the excitation amplitude of 2 mm.

Keywords

Resonant Frequency Phase Portrait European Physical Journal Special Topic Excitation Frequency Load Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Bradai, S. Naifar, T. Keutel, O. Kanoun, Electrodynamic resonant energy harvester for low frequencies and amplitudes, in IEEE International Conference on Instrumentation and Measurement Technology (Montevideo, 2014), p. 1152Google Scholar
  2. 2.
    M. Hendijanizadeh, S.M. Sharkh, S.J. Elliott, M. Moshrefi-Torbati, Smart. Mater. Struct. 22, 125009 (2013)CrossRefADSGoogle Scholar
  3. 3.
    E. Arroyo, A. Badel, F. Formosa, J. Intell. Mater. Syst. Struct. 24, 2023 (2013)CrossRefGoogle Scholar
  4. 4.
    K. Najafi, T. Galchev, E.E. Aktakka, R.L. Peterson, J. McCullagh, Microsystems for energy harvesting, in 16th International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers 2011), (Beijing, China, 2011), p. 1845Google Scholar
  5. 5.
    M. Lallart, S.R. Anton, D.J. Inman, J. Intell. Mater. Syst. Struct. 21, 897 (2010)CrossRefGoogle Scholar
  6. 6.
    C. Eichhorn, R. Tchagsim, N. Wilhelm, P. Woias, J. Micromech. Microeng. 21, 104003 (2011)CrossRefADSGoogle Scholar
  7. 7.
    D. Zhu, S. Roberts, T. Mouille, M.J. Tudor, S.P. Beeby, Smart. Mater. Struct. 21, 105039 (2012)CrossRefADSGoogle Scholar
  8. 8.
    D. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2010)CrossRefADSGoogle Scholar
  9. 9.
    S. Mahmoudi, N. Kacem, N. Bouhaddi, Smart. Mater. Struct. 23, 075024 (2014)CrossRefADSGoogle Scholar
  10. 10.
    A. Badel, G. Sebald, D. Guyomar, M. Lallart, E. Lefeuvre, C. Richard, J. Qiu, J. Acous. Soc. Amer. 119, 2815 (2006)CrossRefADSGoogle Scholar
  11. 11.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)CrossRefADSGoogle Scholar
  12. 12.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)CrossRefADSGoogle Scholar
  13. 13.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)CrossRefADSGoogle Scholar
  14. 14.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Physics Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  15. 15.
    M. Kim, J. Dugundji, B.L. Wardle, Smart Mater. Struct. 24, 055006 (2015)CrossRefADSGoogle Scholar
  16. 16.
    B. And, S. Baglio, F. Maiorca, C. Trigona, Sensors Actuators A: Phys. 202 (2013)Google Scholar
  17. 17.
    B.P. Mann, N.D. Sims, J. Sound. Vib. 319, 515 (2009)CrossRefADSGoogle Scholar
  18. 18.
    T. Sato, H. Igarashi, Smart Mater. Struct. 24, 025033 (2015)CrossRefADSGoogle Scholar
  19. 19.
    W. Martens, U. von Wagner, G. Litak, Eur. Phys. J. Special Topics 222, 1665 (2013)CrossRefADSGoogle Scholar
  20. 20.
    F. Takens, Detecting Strange Attractors in Turbulence Dynamical Systems and Turbulence (Lecture Notes in Mathematics, 1981)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag 2015

Authors and Affiliations

  • S. Bradai
    • 1
    • 2
    Email author
  • S. Naifar
    • 1
    • 2
  • C. Viehweger
    • 1
  • O. Kanoun
    • 1
  • G. Litak
    • 3
    • 4
  1. 1.Chair for Measurement and Sensor Technology, Technische Universität ChemnitzChemnitzGermany
  2. 2.Laboratory of Electromechanical Systems, National Engineering School of Sfax, University of SfaxSfaxTunisia
  3. 3.Faculty of Mechanical Engineering, Lublin University of TechnologyLublinPoland
  4. 4.Laboratoire de Génie Electrique et Ferroélectricité, Institut National des Sciences Appliquées de LyonVilleurbanne CedexFrance

Personalised recommendations