The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2881–2896 | Cite as

Nonlinear spring-less electromagnetic vibration energy harvesting system

  • Z. HadasEmail author
  • C. OndrusekEmail author
Regular Article Electromagnetic Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting


This paper deals with a description and modelling of a spring-less electromagnetic vibration energy harvesting system. The presented unique electromagnetic vibration energy harvester consists of a nonlinear resonance mechanism, magnetic circuit with a coil and an electronic load. The mechanical vibrations excite the nonlinear resonance mechanism and the relative movement of the magnetic circuit against fixed coil induces voltage due to Faraday’s Law. When the electronics is connected the current flows through the load and output power is harvested. There are several nonlinearities which affects operations of the presented electromagnetic energy harvesting system. The significant nonlinearity of the system is stiffness of the resonance mechanism and it causes extending of an operation bandwidth. The harvesting of electrical energy from mechanical vibrations provides electromagnetic damping feedbacks of the coil to moving magnetic circuit. The feedback depends on the current flow through the electronic load and coil. The using of modern power management circuit with optimal power point provides other nonlinear operation.


European Physical Journal Special Topic Energy Harvester Mechanical Vibration Magnetic Circuit Vibration Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Becker, M. Kluge, J. Schalk, K. Tiplady, C. Paget, U. Hilleringmann, T. Otterpohl, IEEE Sens. J. 9 (2009)Google Scholar
  3. 3.
    P. Glynne-Jones, M.J. Tudor, S.P. Beeby, N.M. White, Sensors Actuators A Phys. 110, 344 (2004)CrossRefGoogle Scholar
  4. 4.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  5. 5.
    B.H. Calhoun, D.C. Daly, N. Verma, D.F. Finchelstein, D.D. Wentzloff, A. Wang, S.H. Cho, A.P. Chandrakasan, Ieee Trans. Comput. 54, 727 (2005)CrossRefGoogle Scholar
  6. 6.
    D.P. Arnold, IEEE Trans. Magn. 43, 3940 (2007)CrossRefADSGoogle Scholar
  7. 7.
    S. Priya, D.J. Inman (eds.), Energy Harvesting Technologies (Springer US, Boston, MA, 2009)Google Scholar
  8. 8.
    L. Mateu, F. Moll, in VLSI Circuits Syst. II, Pts 1 2, edited by J.F. Lopez, F.V. Fernandez, J.M. Lopez-Villegas, J.M. de la Rosa (2005), p. 359Google Scholar
  9. 9.
    Z. Hadas, C. Ondrusek, V. Singule, Microsyst. Technol. 16, 691 (2010)CrossRefGoogle Scholar
  10. 10.
    Cammarano, A. Gonzalez-Buelga, S. a Neild, S.G. Burrow, D.J. Inman, J. Phys. Conf. Ser. 476, 012071 (2013)CrossRefADSGoogle Scholar
  11. 11.
    L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94 (2009)Google Scholar
  12. 12.
    T.-W. Ma, H. Zhang, N.-S. Xu, Mech. Syst. Signal Process. 28, 323 (2012)CrossRefADSGoogle Scholar
  13. 13.
    S.D. Nguyen, E. Halvorsen, J. Microelectromech. Syst. 20, 1225 (2011)CrossRefGoogle Scholar
  14. 14.
    E. Sardini, M. Serpelloni, Sensors Actuators, A Phys. 172, 475 (2011)CrossRefGoogle Scholar
  15. 15.
    S.W. Guan, X.B. Shan, T. Xie, R.J. Song, Z.L. Xu, Appl. Mech. Mater. 444–445, 879 (2013)CrossRefGoogle Scholar
  16. 16.
    S.G. Burrow, L.R. Clare, in Proc. IEEE Int. Electr. Mach. Drives Conf. IEMDC 2007 (2007), p. 715Google Scholar
  17. 17.
    J. Yang, Y.M. Wen, P. Li, X.L. Bai, Sci. China Technol. Sci. 54, 1419 (2011)CrossRefGoogle Scholar
  18. 18.
    C.B. Williams, R.B. Yates, Sensors Actuators A Phys. 52, 8 (1996)CrossRefGoogle Scholar
  19. 19.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  20. 20.
    T. von Büren, G. Tröster, Sensors Actuators A Phys. 135, 765 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, J.W. Zu, IEEE Trans. Magn. 48, 3344 (2012)CrossRefADSGoogle Scholar
  22. 22.
    C. Lee, D. Stamp, N.R. Kapania, J.O. Mur-Miranda, in Energy, edited by N.K. Dhar, P.S. Wijewarnasuriya, A.K. Dutta (SPIE, 2010), p. 76830Y–76830Y–12Google Scholar
  23. 23.
    Z. Hadas, V. Singule, C. Ondrusek, Solid State Phenom. 164, 291 (2010)CrossRefGoogle Scholar
  24. 24.
    Z. Hadas, V. Vetiska, Z. Ancik, C. Ondrusek, V. Singule, Smart Sensors, Actuators, Mems IV 87631F (2013)Google Scholar
  25. 25.
    Z. Hadas, V. Vetiska, R. Huzlik, V. Singule, Microsyst. Technol. 20, 831 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Hadas, J. Kurfurst, C. Ondrusek, V. Singule, Microsyst. Technol. 18, 1003 (2012)CrossRefGoogle Scholar
  27. 27.
    Z. Hadas, M. Kluge, V. Singule, C. Ondrusek, in 2007 IEEE Int. Symp. Diagnostics Electr. Mach. Power Electron. Drives (IEEE, 2007), p. 451Google Scholar
  28. 28.
    Z. Hadas, V. Singule, C. Ondrusek, Solid State Phenom. 147–149, 426 (2009)CrossRefGoogle Scholar
  29. 29.
    Z. Hadas, R. Huzlik, in Mechatronics 2013 Recent Technol. Sci. Adv. (2014), p. 371Google Scholar
  30. 30.
    D. Niyato, E. Hossain, M. Rashid, V. Bhargava, IEEE Wirel. Commun. 14, 90 (2007)CrossRefGoogle Scholar
  31. 31.
    E. Lefeuvre, D. Audigier, C. Richard, D. Guyomar, IEEE Trans. Power Electron. 22, 2018 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Brno University of TechnologyBrnoCzech Republic
  2. 2.Faculty of Electrical Engineering and Communication, Brno University of TechnologyBrnoCzech Republic

Personalised recommendations