The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2867–2880 | Cite as

Internal resonance for nonlinear vibration energy harvesting

  • D.X. Cao
  • S. Leadenham
  • A. ErturkEmail author
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting


The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Roundy, P.K. Wright, J. Rabaey, Computer Comm. 26, 1131 (2003)CrossRefGoogle Scholar
  2. 2.
    S.P. Beeby, M.J. Tudor, N. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  3. 3.
    S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007)CrossRefADSGoogle Scholar
  4. 4.
    K. Cook-Chennault, N. Thambi, A. Sastry, Smart Mater. Struct. 17, 043001 (2008)CrossRefADSGoogle Scholar
  5. 5.
    N. Elvin, A. Erturk, Advances in energy harvesting methods (Springer Science & Business Media, 2013)Google Scholar
  6. 6.
    P. Glynne-Jones, et al., Sensors Actuators a-Phys. 110, 344 (2004)CrossRefGoogle Scholar
  7. 7.
    D.P. Arnold, IEEE Trans. Magnet. 43, 3940 (2007)CrossRefADSGoogle Scholar
  8. 8.
    S.D. Moss, et al., Smart Mater. Struct. 24, 023001 (2015)CrossRefADSGoogle Scholar
  9. 9.
    P.D. Mitcheson, et al., Sensors Actuators a-Phys. 115, 523 (2004)CrossRefGoogle Scholar
  10. 10.
    C.P. Le, et al., J. Int. Mat. Syst. Struct. 23, 1409 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)CrossRefADSGoogle Scholar
  12. 12.
    N.E. DuToit, B.L. Wardle, AIAA J. 45, 1126 (2007)CrossRefADSGoogle Scholar
  13. 13.
    A. Erturk, D.J. Inman, Smart Mater. Struct. 18 (2009)Google Scholar
  14. 14.
    S. Adhikari, M. Friswell, D. Inman, Smart Mater. Struct. 18, 115005 (2009)CrossRefADSGoogle Scholar
  15. 15.
    L. Wang, F.G. Yuan, Smart Mater. Struct. 17 (2008)Google Scholar
  16. 16.
    A. Adly, et al., J. Appl. Phys. 107 (2010)Google Scholar
  17. 17.
    R.D. Kornbluh, et al., From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. in SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, 2011)Google Scholar
  18. 18.
    M. Aureli, et al., Smart Mater. Struct. 19, 015003 (2010)CrossRefADSGoogle Scholar
  19. 19.
    S. Anton, K. Farinholt, A. Erturk, J. Int. Mat. Syst. Struct., 1045389X14541501 (2014)Google Scholar
  20. 20.
    Q. Deng, et al., Int. J. Solids Struct. 51, 3218 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Erturk, D.J. Inman, Piezoelectric energy harvesting (John Wiley & Sons, 2011)Google Scholar
  22. 22.
    L. Tang, Y. Yang, C.K. Soh, J. Intel. Mat. Syst. Struct. 21, 1867 (2010)CrossRefGoogle Scholar
  23. 23.
    S.P. Pellegrini, et al., J. Int. Mat. Syst. Struct., 1045389X12444940 (2012)Google Scholar
  24. 24.
    J. Twiefel, H. Westermann, J. Int. Mat. Syst. Struct. 24, 1291 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Harne, K. Wang, Smart Mat. Struct. 22, 023001 (2013)CrossRefADSGoogle Scholar
  26. 26.
    M.F. Daqaq, et al., Appl. Mechan. Rev. 66, 040801 (2014)CrossRefADSGoogle Scholar
  27. 27.
    I.-H. Kim, et al., Appl. Phys. Lett. 98, 214102 (2011)CrossRefADSGoogle Scholar
  28. 28.
    X. Tang, L. Zuo, J. Sound Vibr. 330, 5199 (2011)CrossRefADSGoogle Scholar
  29. 29.
    O. Aldraihem, A. Baz, J. Int. Mat. Syst. Struct., 1045389X11402706 (2011)Google Scholar
  30. 30.
    A. Aladwani, et al., J. Vibr. Acoust. 134, 031004 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Wu, et al., J. Int. Mat. Syst. Struct., 1045389X12457254 (2012)Google Scholar
  32. 32.
    B. Mann, N. Sims, J. Sound Vibr. 319, 515 (2009)CrossRefADSGoogle Scholar
  33. 33.
    R. Ramlan, et al., Nonlinear Dyn. 59, 545 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    D.A. Barton, S.G. Burrow, L.R. Clare, J. Vibr. Acoust. 132, 021009 (2010)CrossRefGoogle Scholar
  35. 35.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94 (2009)Google Scholar
  36. 36.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)CrossRefADSGoogle Scholar
  37. 37.
    G. Litak, M. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  38. 38.
    A. Arrieta, et al., Appl. Phys. Lett. 97, 104102 (2010)CrossRefADSGoogle Scholar
  39. 39.
    S.D. Nguyen, E. Halvorsen, I. Paprotny, Appl. Phys. Lett. 102, 023904-023904-4 (2013)ADSGoogle Scholar
  40. 40.
    E. Halvorsen, Phys. Rev. E 87, 042129 (2013)CrossRefADSGoogle Scholar
  41. 41.
    S. Zhao, A. Erturk, Appl. Phys. Lett. 102, 103902 (2013)CrossRefADSGoogle Scholar
  42. 42.
    R. Harne, M. Thota, K. Wang, Smart Mat. Struct. 22, 125028 (2013)CrossRefADSGoogle Scholar
  43. 43.
    L. Tang, Y. Yang, Appl. Phys. Lett. 101, 094102 (2012)CrossRefADSGoogle Scholar
  44. 44.
    A. Haddow, A. Barr, D. Mook, J. Sound Vibr. 97, 451 (1984)MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    L.-Q. Chen, W.-A. Jiang, J. Appl. Mechan. 82, 031004 (2015)CrossRefADSGoogle Scholar
  46. 46.
    A. Erturk, J.M. Renno, D.J. Inman, J. Int. Mat. Syst. Struct. 20, 529 (2009)CrossRefGoogle Scholar
  47. 47.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (John Wiley & Sons, 2008)Google Scholar
  48. 48.
    S. Leadenham, A. Erturk, Smart Mat. Struct. 24, 055021 (2015)CrossRefADSGoogle Scholar
  49. 49.
    A.H. Nayfeh, D.T. Mook, L.R. Marshall, J. Hydronautics 7, 145 (1973)CrossRefGoogle Scholar
  50. 50.
    B. Balachandran, A. Nayfeh, Nonlinear Dyn. 2, 77 (1991)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.G. W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA
  2. 2.College of Mechanical Engineering, Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of TechnologyBeijingChina

Personalised recommendations