Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2771–2785 | Cite as

Energy harvesting of cantilever beam system with linear and nonlinear piezoelectric model

  • Marek BorowiecEmail author
Open Access
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

The nonlinear beam with vertical combined excitations is proposed as an energy harvester. The nonlinearities are included both, in the beam model and also in the electrical subsystem. The system is modelled as a cantilever beam with included a tip mass and piezoelectric patches which convert the bending strains induced by both, the harmonic and the additive stochastic forces. The excitation affects in vertical directions by kinematic forcing into electrical charge. The first main goal is to analyse the dynamics of the electro-mechanical beam system and the influence of the mixed excitation forces into an effectiveness of the energy harvesting. Overcoming the potential barrier by the beam system is also analysed, where large output amplitudes occur. Such region of the vibration affects more power generation, which is crucial in terms of load resistors sensitivities. By increasing the additive noise level with fixed harmonic force it is observed the transition from single well oscillations to inter-well stochastic jumps. The second mail goal is analysing the influence of the piezoelectric nonlinear characteristic and compare the results to the linear piezoelectric cases. The output power is measured during different system behaviours provided by different piezoelectric characteristic as well as introduced stochastic components by modulated tip mass of the system.

References

  1. 1.
    M. Borowiec, Proceedings of the 16th International Conference on Mechatronics Mechatronika 2014, 194 (2014)Google Scholar
  2. 2.
    C.B. Williams, R.B. Yates, Sens. Actuators A 52, 8 (1996)CrossRefGoogle Scholar
  3. 3.
    S. Roundy, P. Wright, J. Rabaey, Kluwer Academics Boston M.A. (2003)Google Scholar
  4. 4.
    S.R. Anton, A. Ertruk, D.J. Inmann, Smart Mater. Struct. 19, 115021 (2010)CrossRefADSGoogle Scholar
  5. 5.
    H.S. Kim, J.-H. Kim, J. Kim, Inter. J. Precision Engin. Manufacturing 12, 1129 (2011)CrossRefGoogle Scholar
  6. 6.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Tang, Y. Yang, C.K. Soh, J. Intell. Mater. Syst. Struct. 21, 1867 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Erturk, D. Inman, Piezoelectric Energy Harvesting, (John Wiley & Sons Ltd., Chichester, UK, 2011)Google Scholar
  9. 9.
    S. Priya, J. Electroceram. 19, 167 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Erturk, J. Hoffmann, D.J. Inman, Applied Phys. Lett. 94, 254102 (2009)CrossRefADSGoogle Scholar
  11. 11.
    E.S. Leland, P.K. Wright, Smart Mater. Struct. 15, 1413 (2006)CrossRefADSGoogle Scholar
  12. 12.
    G. Litak, M.I. Friswell, S. Adhikari, Applied Phys. Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  13. 13.
    M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees, O. Bilgen, G. Litak, J. Int. Mat. Syst. Struc. 23, 1505 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Borowiec, G. Litak, M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees, O. Bilgen, Int. J. Struct. Stability Dyn. 13, 1340006 (2013)CrossRefGoogle Scholar
  15. 15.
    E. Halvorsen, J. Micromech. Syst. 17, 1061 (2008)CrossRefGoogle Scholar
  16. 16.
    L.-C.J. Blystad, E. Halvorsen, Smart Mater. Struct. 20, 025011 (2011)CrossRefADSGoogle Scholar
  17. 17.
    M. Ferrari, M. Bau, M. Guizzetti, V. Ferrari, Sensor Actuators A-Phys. 172, 287 (2011)CrossRefGoogle Scholar
  18. 18.
    G. Litak, M. Borowiec, M.I. Friswell, S. Adhikari, J. Theor. Appl. Mech. 49, 757 (2011)Google Scholar
  19. 19.
    N.A. Khovanova, I.A. Khovanov, App. Phys. Lett. 99, 144101 (2011)CrossRefADSGoogle Scholar
  20. 20.
    M.F. Daqaq, J. Sound Vibr. 330, 2554 (2011)CrossRefADSGoogle Scholar
  21. 21.
    W. Martens, U. von Wagner, G. Litak, Eur. Phys. J. Special Topics 222, 1665 (2013)CrossRefADSGoogle Scholar
  22. 22.
    P. Kumar, S. Narayanan, S. Adhikari, M.I. Friswell, J. Sound Vibr. 333, 2040 (2014)CrossRefADSGoogle Scholar
  23. 23.
    E. Esmailzadeh, G. Nakhaie-Jazar, Int. J. Nonlinear Mech. 33, 567 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag 2015

Authors and Affiliations

  1. 1.Lublin University of TechnologyLublinPoland

Personalised recommendations