The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2733–2753 | Cite as

Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling

  • H. Abdelmoula
  • A. AbdelkefiEmail author
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting


The design and analysis of innovative ultra-wide bandwidth piezoelectric energy harvesters are deeply investigated. An electrical inductance is considered in the harvester’s circuit to be connected in series or parallel to a load resistance. A lumped-parameter model is used to model the electromechanical response of the harvester when subjected to harmonic excitations. A linear comprehensive analysis is performed to investigate the effects of an electrical inductance on the coupled frequencies and damping of the harvester. It is shown that including an electrical inductance connected in series or in parallel to an electrical load resistance can result in the appearance of a second coupled frequency of electrical type. The results show that the inclusion of an inductance may give the opportunity to tune one of the coupled frequencies of mechanical and electrical types to the available excitation frequency in the environment. Using the gradient method, an optimization analysis is then performed to determine the optimum values of the electrical inductance and load resistance that maximize the harvested power. It is demonstrated that, for each excitation frequency, there is a combination of optimum values of the electrical inductance and resistance in such a way an optimum constant value of the harvested power is found. Numerical analysis is then performed to show the importance of considering an additional inductance in the harvester’s circuitry in order to design broadband energy harvesters. The results show that the presence of the second coupled frequency of electrical type due to the inductance gives the possibility to design optimal broadband inductive-resistive piezoelectric energy harvesters with minimum displacement due to shunt damping effect.


European Physical Journal Special Topic Excitation Frequency Load Resistance Energy Harvester Optimization Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Barton, S. Burrow, L. Clare, J. Vib. Acous. (2010)Google Scholar
  2. 2.
    A. Karami, D.J. Inman, J. Soun. Vib. 330, 5583 (2011)CrossRefADSGoogle Scholar
  3. 3.
    S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, 1 (2007)CrossRefADSGoogle Scholar
  4. 4.
    H. Sodano, G. Park, D.J. Inman, The Shock Vib. Dig. 36, 197 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Erturk, D.J. Inman, Smart Mater. Struct. 18, 025009 (2009)CrossRefADSGoogle Scholar
  6. 6.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  7. 7.
    S. Adhikari, M.I. Friswell, D.J. Inman, Smart Mater. Struct. 18, 115005 (2009)CrossRefADSGoogle Scholar
  8. 8.
    A. Abdelkefi, N. Barsallo, J. Intel. Mater. Sys. Struct. 25, 1771 (2014)CrossRefGoogle Scholar
  9. 9.
    S.F. Ali, M.I. Friswell, S. Adhikari, Smart Mater. Struct. 19, 105010 (2010)CrossRefADSGoogle Scholar
  10. 10.
    J. Sirohi, R. Mahadik, J. Intel. Mater. Sys. Struct. 22, 2215 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Zhao, L. Tang, Y. Yang, Smart Mater. Struct. 22, 125003 (2013)CrossRefADSGoogle Scholar
  12. 12.
    H.L. Dai, A. Abdelkefi, L. Wang, J. Intel. Mater. Sys. Struct. 25, 1861 (2014)CrossRefGoogle Scholar
  13. 13.
    Z. Yan, A. Abdelkefi, Nonlinear Dyn. 77, 1171 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, Perv. Comput. IEEE 4, 28 (2005)CrossRefGoogle Scholar
  15. 15.
    S.M. Shahruz, J. Soun. Vib. 292, 987 (2006)CrossRefADSGoogle Scholar
  16. 16.
    S. Ben Ayed, A. Abdelkefi, F. Najar, M.R. Hajj, J. Intel. Mater. Sys. Struct. 25, 174 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Abdelkefi, N. Barsallo, L. Tang, Y. Yang, M.R. Hajj, J. Intel. Mater. Sys. Struct. 25, 1429 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Rosa, C. De Marqui, J. Shock Vib. 2014, 930503 (2014)Google Scholar
  19. 19.
    B.P. Mann, N.D. Sims, J. Soun. Vib. 319, 515 (2009)CrossRefADSGoogle Scholar
  20. 20.
    S. Stanton, C.C. McGehee, B. Mann, Appl. Phys. Lett. 95, 174103 (2009)CrossRefADSGoogle Scholar
  21. 21.
    A. Erturk, D.J. Inman, J. Soun. Vib. 330, 2339 (2011)CrossRefADSGoogle Scholar
  22. 22.
    A. Karami, Ph.D. Dissertation, Virginia Tech, VA, 2011Google Scholar
  23. 23.
    R. Masana, M.F. Daqaq, J. Vib. Acous. 330, 6036 (2011)Google Scholar
  24. 24.
    M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, L.W. Lees, G. Litak, J. Intel. Mater. Syst. Struct. 23, 1505 (2012)CrossRefGoogle Scholar
  25. 25.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)CrossRefADSGoogle Scholar
  26. 26.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Phys. D, Nonlinear Phen. 239, 640 (2010)CrossRefADSzbMATHGoogle Scholar
  27. 27.
    R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013)CrossRefADSGoogle Scholar
  28. 28.
    R. Masana, M.F. Daqaq, J. Soun. Vib. IEEE 330, 6036 (2011)CrossRefADSGoogle Scholar
  29. 29.
    S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intel. Mater. Sys. Struct. 24, 1303 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Badel, E. Lefeuvre, J. Phys. Conf. Ser. 557, 012115 (2014)CrossRefADSGoogle Scholar
  31. 31.
    J.A. Bowden, S.G. Burrow, A. Cammarano, L.R. Clare, P.D. Mitcheson, Mechatr. IEEE/ASME Transac. 2, 603 (2015)CrossRefGoogle Scholar
  32. 32.
    C. De Marqui, A. Erturk, D.J. Inman, J. Intel. Mater. Sys. Struct. 21, 983 (2010)CrossRefGoogle Scholar
  33. 33.
    A. Agneni, F. Mastroddi, G.M. Polli, Comp. Struct. 81, 91 (2003)CrossRefGoogle Scholar
  34. 34.
    D.L. Edberg, A.S. Bicos, C.M. Fuller, J.J. Tracy, J.S. Fechter, J. Intel. Mater. Sys. Struct. 3, 333 (1992)CrossRefGoogle Scholar
  35. 35.
    A.J. Fleming, S. Belirens, S.O.R. Moheimani, Electron. Lett. 36, 1525 (2000)CrossRefGoogle Scholar
  36. 36.
    A.J. Fleming, S.O.R. Moheimani, Smart Mater. Struct. 12, 36 (2003)CrossRefADSGoogle Scholar
  37. 37.
    J.M. Renno, M.F. Daqaq, D.J. Inman, J. Soun. Vib. 320, 386 (2009)CrossRefADSGoogle Scholar
  38. 38.
    Y. Li, C. Richard, Act. Pas. Smart Struct. Integ. Sys. (2014), doi: 10.1117/12.2044793Google Scholar
  39. 39.
    S. Shahab, A. Erturk, Smart Mater. Struc. 23, 125032 (2014)CrossRefADSGoogle Scholar
  40. 40.
    Hammond Manufacturing, Transformers and inductors (2000), available at:

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations