Skip to main content

Advertisement

Log in

Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling

  • Regular Article
  • Piezoelectric Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The design and analysis of innovative ultra-wide bandwidth piezoelectric energy harvesters are deeply investigated. An electrical inductance is considered in the harvester’s circuit to be connected in series or parallel to a load resistance. A lumped-parameter model is used to model the electromechanical response of the harvester when subjected to harmonic excitations. A linear comprehensive analysis is performed to investigate the effects of an electrical inductance on the coupled frequencies and damping of the harvester. It is shown that including an electrical inductance connected in series or in parallel to an electrical load resistance can result in the appearance of a second coupled frequency of electrical type. The results show that the inclusion of an inductance may give the opportunity to tune one of the coupled frequencies of mechanical and electrical types to the available excitation frequency in the environment. Using the gradient method, an optimization analysis is then performed to determine the optimum values of the electrical inductance and load resistance that maximize the harvested power. It is demonstrated that, for each excitation frequency, there is a combination of optimum values of the electrical inductance and resistance in such a way an optimum constant value of the harvested power is found. Numerical analysis is then performed to show the importance of considering an additional inductance in the harvester’s circuitry in order to design broadband energy harvesters. The results show that the presence of the second coupled frequency of electrical type due to the inductance gives the possibility to design optimal broadband inductive-resistive piezoelectric energy harvesters with minimum displacement due to shunt damping effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Barton, S. Burrow, L. Clare, J. Vib. Acous. (2010)

  2. A. Karami, D.J. Inman, J. Soun. Vib. 330, 5583 (2011)

    Article  ADS  Google Scholar 

  3. S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, 1 (2007)

    Article  ADS  Google Scholar 

  4. H. Sodano, G. Park, D.J. Inman, The Shock Vib. Dig. 36, 197 (2004)

    Article  Google Scholar 

  5. A. Erturk, D.J. Inman, Smart Mater. Struct. 18, 025009 (2009)

    Article  ADS  Google Scholar 

  6. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  7. S. Adhikari, M.I. Friswell, D.J. Inman, Smart Mater. Struct. 18, 115005 (2009)

    Article  ADS  Google Scholar 

  8. A. Abdelkefi, N. Barsallo, J. Intel. Mater. Sys. Struct. 25, 1771 (2014)

    Article  Google Scholar 

  9. S.F. Ali, M.I. Friswell, S. Adhikari, Smart Mater. Struct. 19, 105010 (2010)

    Article  ADS  Google Scholar 

  10. J. Sirohi, R. Mahadik, J. Intel. Mater. Sys. Struct. 22, 2215 (2011)

    Article  Google Scholar 

  11. L. Zhao, L. Tang, Y. Yang, Smart Mater. Struct. 22, 125003 (2013)

    Article  ADS  Google Scholar 

  12. H.L. Dai, A. Abdelkefi, L. Wang, J. Intel. Mater. Sys. Struct. 25, 1861 (2014)

    Article  Google Scholar 

  13. Z. Yan, A. Abdelkefi, Nonlinear Dyn. 77, 1171 (2014)

    Article  Google Scholar 

  14. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, Perv. Comput. IEEE 4, 28 (2005)

    Article  Google Scholar 

  15. S.M. Shahruz, J. Soun. Vib. 292, 987 (2006)

    Article  ADS  Google Scholar 

  16. S. Ben Ayed, A. Abdelkefi, F. Najar, M.R. Hajj, J. Intel. Mater. Sys. Struct. 25, 174 (2014)

    Article  Google Scholar 

  17. A. Abdelkefi, N. Barsallo, L. Tang, Y. Yang, M.R. Hajj, J. Intel. Mater. Sys. Struct. 25, 1429 (2014)

    Article  Google Scholar 

  18. M. Rosa, C. De Marqui, J. Shock Vib. 2014, 930503 (2014)

    Google Scholar 

  19. B.P. Mann, N.D. Sims, J. Soun. Vib. 319, 515 (2009)

    Article  ADS  Google Scholar 

  20. S. Stanton, C.C. McGehee, B. Mann, Appl. Phys. Lett. 95, 174103 (2009)

    Article  ADS  Google Scholar 

  21. A. Erturk, D.J. Inman, J. Soun. Vib. 330, 2339 (2011)

    Article  ADS  Google Scholar 

  22. A. Karami, Ph.D. Dissertation, Virginia Tech, VA, 2011

  23. R. Masana, M.F. Daqaq, J. Vib. Acous. 330, 6036 (2011)

    Google Scholar 

  24. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, L.W. Lees, G. Litak, J. Intel. Mater. Syst. Struct. 23, 1505 (2012)

    Article  Google Scholar 

  25. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  26. S.C. Stanton, C.C. McGehee, B.P. Mann, Phys. D, Nonlinear Phen. 239, 640 (2010)

    Article  ADS  MATH  Google Scholar 

  27. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013)

    Article  ADS  Google Scholar 

  28. R. Masana, M.F. Daqaq, J. Soun. Vib. IEEE 330, 6036 (2011)

    Article  ADS  Google Scholar 

  29. S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intel. Mater. Sys. Struct. 24, 1303 (2013)

    Article  Google Scholar 

  30. A. Badel, E. Lefeuvre, J. Phys. Conf. Ser. 557, 012115 (2014)

    Article  ADS  Google Scholar 

  31. J.A. Bowden, S.G. Burrow, A. Cammarano, L.R. Clare, P.D. Mitcheson, Mechatr. IEEE/ASME Transac. 2, 603 (2015)

    Article  Google Scholar 

  32. C. De Marqui, A. Erturk, D.J. Inman, J. Intel. Mater. Sys. Struct. 21, 983 (2010)

    Article  Google Scholar 

  33. A. Agneni, F. Mastroddi, G.M. Polli, Comp. Struct. 81, 91 (2003)

    Article  Google Scholar 

  34. D.L. Edberg, A.S. Bicos, C.M. Fuller, J.J. Tracy, J.S. Fechter, J. Intel. Mater. Sys. Struct. 3, 333 (1992)

    Article  Google Scholar 

  35. A.J. Fleming, S. Belirens, S.O.R. Moheimani, Electron. Lett. 36, 1525 (2000)

    Article  Google Scholar 

  36. A.J. Fleming, S.O.R. Moheimani, Smart Mater. Struct. 12, 36 (2003)

    Article  ADS  Google Scholar 

  37. J.M. Renno, M.F. Daqaq, D.J. Inman, J. Soun. Vib. 320, 386 (2009)

    Article  ADS  Google Scholar 

  38. Y. Li, C. Richard, Act. Pas. Smart Struct. Integ. Sys. (2014), doi: 10.1117/12.2044793

  39. S. Shahab, A. Erturk, Smart Mater. Struc. 23, 125032 (2014)

    Article  ADS  Google Scholar 

  40. Hammond Manufacturing, Transformers and inductors (2000), available at: http://www.hammondmfg.com/pdf/5C08.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmoula, H., Abdelkefi, A. Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling. Eur. Phys. J. Spec. Top. 224, 2733–2753 (2015). https://doi.org/10.1140/epjst/e2015-02586-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02586-4

Keywords

Navigation