The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2687–2701 | Cite as

Broadband vibration energy harvesting by application of stochastic resonance from rotational environments

  • Y. ZhangEmail author
  • R. ZhengEmail author
  • T. Kaizuka
  • D. Su
  • K. Nakano
  • M.P. Cartmell
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting


A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.


European Physical Journal Special Topic Cantilever Beam Energy Harvester Stochastic Resonance Instantaneous Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O’Donnell, C.R. Saha, S. Roy, J. Micromech. Microeng. 17, 7 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Fang, J. Liu, Z. Xu, L. Dong, L. Wang, D. Chen, B. Cai, Y. Liu, J. Sound Vib. 37, 11 (2006)Google Scholar
  3. 3.
    N.G. Stephen, J. Sound. Vib. 293, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Hashimoto, Y. Zhang, N. Nagai, Y. Fujikara, J. Takahashi, S. Kumagai, M. Kasai, K. Suto, H. Okada, W. Jiang, in Proceedings of the IEEE-ISIE (Taiwan, 2013), p. 1Google Scholar
  5. 5.
    Y. Shu, I. Lien, Smart Mater. Struct. 15, 1499 (2006)CrossRefADSGoogle Scholar
  6. 6.
    H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason Ferroelectr. Freq. Control 54, 9 (2007)Google Scholar
  7. 7.
    S. Yang, Y. Lee, Smart Mat. Struct. 3, 494 (1994)CrossRefADSGoogle Scholar
  8. 8.
    H.A. Sodano, G.E. Simmers, R. Dereux, D.J. Inman, J. Intel. Mat. Syst. Str. 18, 1 (2007)Google Scholar
  9. 9.
    M. Ujihara, G.P. Carman, D.G. Lee, Appl. Phys. Lett. 91, 093508 (2007)CrossRefADSGoogle Scholar
  10. 10.
    S. Priya, D.J. Inman, Energy Harvesting Technologies, 1st edn. (Springer, Berlin, 2009)Google Scholar
  11. 11.
    F. Raischel, A. Moreira, P.G. Lind, Eur. Phys. J. Special Topics 223, 1 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Rao, S. Cheng, D.P. Arnold, J. Micromech. Microeng. 23, 114012 (2013)CrossRefADSGoogle Scholar
  13. 13.
    R. Riemer, A. Shapiro, J Neuroeng. Rehabil. 8, 1 (2011)CrossRefGoogle Scholar
  14. 14.
    S.J. Roundy, J. Tola, Smart Mater. Struct. 23, 105004 (2014)CrossRefADSGoogle Scholar
  15. 15.
    F. Orfei, I. Neri, H. Vocca, L. Gammaitoni, in Proceedings of the ASME 2014 International Design Engineering Technical Conference & Computers and Information in Engineering Conference (New York, 2014)Google Scholar
  16. 16.
    S.D. Nguyen, E. Halvorsen, L. Paprotny, Appl. Phys. Lett. 102, 023904 (2013)CrossRefADSGoogle Scholar
  17. 17.
    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 1 (1998)CrossRefGoogle Scholar
  18. 18.
    M. Lohndorf, T. Kvisteroy, E. Westby, E. Halvorsen, in Proceedings of PowerMEMS 2007 (Freiburg, 2007), p. 331Google Scholar
  19. 19.
    K. Nakano, M.P. Cartmell, H. Hu, R. Zheng, Stro. Vestn. – J. Mech. E 60, 5 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Zheng, K. Nakano, H. Hu, D. Su, M.P. Cartmell, J. Sound Vib. 333, 12 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, R. Zheng, K. Nakano, J. Phys.: Conf. Ser. 557, 012097 (2014)ADSGoogle Scholar
  22. 22.
    B.P. Mann, B.A. Owens, J. Sound Vib. 329, 9 (2010)Google Scholar
  23. 23.
    D. Su, K. Nakano, R. Zheng, M.P. Cartmell, Proc IMechE Part C – J. Mechanical Engineering Science, doi: 10.1177/0954406214563736 (2014)Google Scholar
  24. 24.
    Y. Zhang, R. Zheng, K. Nakano, M.P. Cartmell, in Proceedings of Korea – Japan Symposium on Dynamics and Control 2015 (Busan, 2015)Google Scholar
  25. 25.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 2 (1990)CrossRefGoogle Scholar
  26. 26.
    L. Gammaitoni, P. Hänggi, Jung, F. Marchesoni, Rev. Mod. Phys. 70, 1 (1998)CrossRefGoogle Scholar
  27. 27.
    B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 9 (1989)CrossRefGoogle Scholar
  28. 28.

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Institute of Industrial Science, The University of TokyoTokyoJapan
  2. 2.Interfaculty Initiative in Information Studies, The University of TokyoTokyo 153-8505Japan
  3. 3.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations