The European Physical Journal Special Topics

, Volume 224, Issue 13, pp 2573–2577

Stack and dump: Peak-power scaling by coherent pulse addition in passive cavities

  • S. Breitkopf
  • T. Eidam
  • A. Klenke
  • H. Carstens
  • S. Holzberger
  • E. Fill
  • T. Schreiber
  • F. Krausz
  • A. Tünnermann
  • I. Pupeza
  • J. Limpert
Review ICAN Science
Part of the following topical collections:
  1. Science and Applications of the Coherent Amplifying Network (CAN) Laser

Abstract

During the last decades femtosecond lasers have proven their vast benefit in both scientific and technological tasks. Nevertheless, one laser feature bearing the tremendous potential for high-field applications, delivering extremely high peak and average powers simultaneously, is still not accessible. This is the performance regime several upcoming applications such as laser particle acceleration require, and therefore, challenge laser technology to the fullest. On the one hand, some state-of-the-art canonical bulk amplifier systems provide pulse peak powers in the range of multi-terawatt to petawatt. On the other hand, concepts for advanced solid-state-lasers, specifically thin disk, slab or fiber systems have shown their capability of emitting high average powers in the kilowatt range with a high wall-plug-efficiency while maintaining an excellent spatial and temporal quality of the output beam.

In this article, a brief introduction to a concept for a compact laser system capable of simultaneously providing high peak and average powers all along with a high wall-plug efficiency will be given. The concept relies on the stacking of a pulse train emitted from a high-repetitive femtosecond laser system in a passive enhancement cavity, also referred to as temporal coherent combining. In this manner, the repetition rate is decreased in favor of a pulse energy enhancement by the same factor while the average power is almost preserved. The key challenge of this concept is a fast, purely reflective switching element that allows for the dumping of the enhanced pulse out of the cavity. Addressing this challenge could, for the first time, allow for the highly efficient extraction of joule-class pulses at megawatt average power levels and thus lead to a whole new area of applications for ultra-fast laser systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, Nature Photonics 7, 258 (2013)CrossRefADSGoogle Scholar
  2. 2.
    W. Leemans, E. Esarey, Phys. Today 62, 44 (2009)CrossRefGoogle Scholar
  3. 3.
    W.P. Leemans, R. Duarte, E. Esarey, S. Fournier, C.G.R. Geddes, D. Lockhart, C.B. Schroeder, C. Toth, J.L. Vay, S. Zimmermann, AIP Conf. Proc. 1299, 3 (2010)Google Scholar
  4. 4.
    T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, et al., Opt. Lett. 35, 94 (2010)CrossRefADSGoogle Scholar
  5. 5.
    R.J. Jones, J. Ye, Opt. Lett. 27, 1848 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Y. Vidne, M. Rosenbluh, T.W. Hansch, Opt. Lett. 28, 2396 (2003)CrossRefADSGoogle Scholar
  7. 7.
    A. Klenke, S. Breitkopf, M. Kienel, Opt. Lett. 38, 2283 (2013)CrossRefADSGoogle Scholar
  8. 8.
    H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, et al., Opt. Lett. 39, 2595 (2014)CrossRefADSGoogle Scholar
  9. 9.
    H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, et al., Opt. Expr. 21, 11606 (2013)CrossRefADSGoogle Scholar
  10. 10.
    S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, J. Limpert, Light Sci. Appl., e211 (2014), doi: 10.1038/lsa.2014.92Google Scholar
  11. 11.
    M. Cammarata, L. Eybert, F. Ewald, W. Reichenbach, M. Wulff, P. Anfinrud, et al., Rev. Scientific Instr. 80, 015101 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S. Breitkopf
    • 1
  • T. Eidam
    • 1
    • 2
  • A. Klenke
    • 1
    • 2
  • H. Carstens
    • 3
    • 4
  • S. Holzberger
    • 3
    • 4
  • E. Fill
    • 3
    • 4
  • T. Schreiber
    • 5
  • F. Krausz
    • 3
    • 4
  • A. Tünnermann
    • 1
    • 2
    • 5
  • I. Pupeza
    • 3
    • 4
  • J. Limpert
    • 1
    • 2
    • 5
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Helmholtz-Institute JenaJenaGermany
  3. 3.Max-Planck-Institute of Quantum OpticsGarchingGermany
  4. 4.Department of PhysicsLudwig Maximilians University MünchenGarchingGermany
  5. 5.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations