The European Physical Journal Special Topics

, Volume 224, Issue 13, pp 2567–2571

Divided-pulse amplification for terawatt-class fiber lasers

  • T. Eidam
  • M. Kienel
  • A. Klenke
  • J. Limpert
  • A. Tünnermann
Review ICAN Science
  • 145 Downloads
Part of the following topical collections:
  1. Science and Applications of the Coherent Amplifying Network (CAN) Laser

Abstract

The coherent combination of ultra short laser pulses is a promising approach for scaling the average and peak power of ultrafast lasers. Fiber lasers and amplifiers are especially suited for this technique due to their simple singe-pass setups that can be easily parallelized. Here we propose the combination of the well-known approach of spatially separated amplification with the technique of divided-pulse amplification, i.e. an additionally performed temporally separated amplification. With the help of this multidimensional pulse stacking, laser systems come into reach capable of emitting 10’s of joules of energy at multi-kW average powers that simultaneously employ a manageable number of fibers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Leemans, E. Esarey, Phys. Today 62, 44 (2009)CrossRefGoogle Scholar
  2. 2.
    T.Y. Fan, Selected Topics Quant. Electr., IEEE J. 11, 567 (2005)CrossRefGoogle Scholar
  3. 3.
    E. Seise, A. Klenke, J. Limpert, A. Tünnermann, Opt. Expr. 18, 27827 (2010)CrossRefADSGoogle Scholar
  4. 4.
    A. Klenke, E. Seise, S. Demmler, J. Rothhardt, S. Breitkopf, J. Limpert, A. Tünnermann, Opt. Expr. 19, 24280 (2011)CrossRefADSGoogle Scholar
  5. 5.
    A. Klenke, S. Breitkopf, M. Kienel, Opt. Lett. 38, 2283 (2013)CrossRefADSGoogle Scholar
  6. 6.
    J. Limpert, Performance Scaling of Ultrafast Laser Systems by Coherent Addition of Femtosecond Pulses, CLEO (San Jose, USA, 2014), SW3E.3Google Scholar
  7. 7.
    S. Podleska, German Patent DE102006060703 (2006)Google Scholar
  8. 8.
    L. Shimshi, A.A. Ishaaya, N. Davidson, A.A. Friesem, Opt. Commun., 275 (2007)Google Scholar
  9. 9.
    S. Zhou, F.W. Wise, D.G. Ouzounov, Opt. Lett. 32, 871 (2007)CrossRefADSGoogle Scholar
  10. 10.
    T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)CrossRefADSGoogle Scholar
  11. 11.
    M. Kienel, A. Klenke, T. Eidam, M. Baumgartl, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Expr. 21, 29031 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Hönninger, E. Mottay, F. Druon, P. Georges, Opt. Lett. 38, 106 (2013)CrossRefADSGoogle Scholar
  13. 13.
    M. Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, A. Tünnermann, Opt. Lett. 39, 1049 (2014)CrossRefADSGoogle Scholar
  14. 14.
    J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, A. Tünnermann, Light: Sci. Appl. 1, e8 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • T. Eidam
    • 1
    • 2
  • M. Kienel
    • 1
    • 2
  • A. Klenke
    • 1
    • 2
  • J. Limpert
    • 1
    • 2
  • A. Tünnermann
    • 1
    • 2
    • 3
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Helmholtz-Institute JenaJenaGermany
  3. 3.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations