Skip to main content

Novel concept for the preparation of gas selective nanocomposite membranes


In this work we report on a novel concept for the preparation of gas selective composite membranes by a simple and robust synthesis protocol involving a controlled in-situpolycondensation of functional alkoxysilanes within the pores of a mesoporous ceramic matrix. This innovative approach targets the manufacture of thin nanocomposite membranes, allowing good compromise between permeability, selectivity and thermomechanical strength. Compared to simple infiltration, the synthesis protocol allows a controlled formation of gas separation membranes from size-adjusted functional alkoxysilanes by a chemical reaction within the mesopores of a ceramic support, without any formation of a thick and continuous layer on the support top-surface. Membrane permeability can thus be effectively controlled by the thickness and pore size of the mesoporous layer, and by the oligomers chain length. The as-prepared composite membranes are expected to possess a good mechanical and thermomechanical resistance and exhibit a thermally activated transport of He and H2 up to 150 °C, resulting in enhanced separation factors for specific gas mixtures e.g. FH2/CO ∼ 10; FH2/CO2 ∼ 3; FH2/CH4 ∼ 62.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Ayral, A. Julbe, G. Centi, N. Kanellopoulos, Ceramic membranes for gas treatment and Separation, in Nanoporous Materials for Energy and the Environment, edited by N. Kanellopouslos (Stanford Publishing Pte. Ltd, 2012)

  2. 2.

    Y.H. Ma, Hydrogen Separation Membranes, in: Advanced Membrane Technology and Applications, edited by N.N. Li (John Wiley & Sons, Inc., 2008)

  3. 3.

    A. Brunetti, G. Barbieri, E. Drioli, Gas Separation, Applications, in Encyclopedia of Membrane Science and Technology, edited by E.M.V. Hoek, V.V. Tarabara (John Wiley & Sons, Inc., 2013)

  4. 4.

    N. Benes, J.D.F. Ramsay, C. Guizard, Recent Advances in Gas Separation by Microporous Ceramic Membranes, edited by N.K. Kanellopoulos (Elsevier, 2000)

  5. 5.

    P. Pandey, R.S. Chauhan, Prog. Polym. Sci. 26, 853 (2001)

    Article  Google Scholar 

  6. 6.

    G. Maier, Angew. Chem. Int. Edit. 37, 2960 (1998)

    Article  Google Scholar 

  7. 7.

    W.J. Koros, Macromol. Symp. 188, 13 (2002)

    Article  Google Scholar 

  8. 8.

    M. Anderson, H. Wang, Y.S. Lin, Rev. Chem. Eng. 28, 101 (2012)

    Article  Google Scholar 

  9. 9.

    M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K Jeong, Ind. Eng. Chem. Res. 51, 2179 (2012)

    Article  Google Scholar 

  10. 10.

    S.J. Miller, W.J. Koros, D.Q. Vu, Surf. Sci. Sci. Catal. 170, 1590 (2007)

    Article  Google Scholar 

  11. 11.

    F. Peng, L. Lu, H. Sun, Y. Wang, J. Liu, Z. Jiang, Chem. Mater. 17, 6790 (2005)

    Article  Google Scholar 

  12. 12.

    Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, J. Mater. Chem. 1, 10058 (2013)

    Article  Google Scholar 

  13. 13.

    M. Drobek, A. Ayral, A. Julbe, C. Charmette, J. Motuzas, C. Loubat, E. Louradour, N. Del Bianco, Composite membranes, the preparation method and uses thereof, WO 2014016524 A1 2014013 (2014)

  14. 14.

    W. Yoshida, Y. Cohen, J. Membr. Sci. 213, 145 (2003)

    Article  Google Scholar 

  15. 15.

    H. Cong, M. Radosz, B.F. Towler, Y. Shen, Sep. Purif. Technol. 55, 281 (2007)

    Article  Google Scholar 

  16. 16.

    F. Xiangli, Y. Chen, W. Jin, N. Xu, Ind. Eng. Chem. Res. 46, 2224 (2007)

    Article  Google Scholar 

  17. 17.

    M. Drobek, J. Motuzas, V. Durand, M. Duchateau, C. Charmette, A. Hertz, C. Loubat, A. Julbe, J. Membr. Sci. 429, 428 (2013)

    Article  Google Scholar 

  18. 18.

    H.L. Castricum, G.G. Paradis, M.C. Mittelmeijer-Hazeleger, R. Kreiter, J.F. Vente, J.E. ten Elshof, Adv. Funct. Mater. 21, 2319 (2011)

    Article  Google Scholar 

  19. 19.

    T.A. Peters, C.H.S. Poeth, N.E. Benes, H.C.W.M. Buijs, F.F. Vercauteren, J.T.F. Keurentjes 276, 42 (2006)

    Google Scholar 

  20. 20.

    W. Wei, S. Xia, G. Liu, X. Dong, W. Jin, N. Xu, J. Membr. Sci. 375, 334 (2011)

    Article  Google Scholar 

  21. 21.

    X. Cao, T. Zhang, Q.T. Nguyen, Y. Zhang, Z. Ping, J. Membr. Sci. 312, 15 (2008)

    Article  Google Scholar 

  22. 22.

    R. Kreiter, D.P. Wolfs, C.W.R. Engelen, H.M. van Veen, J.F. Vente, J. Membr. Sci. 319, 126 (2008)

    Article  Google Scholar 

  23. 23.

    H. Lin, B.D. Freeman, J. Membr. Sci. 239, 105 (2004)

    Article  Google Scholar 

  24. 24.

    R. Paterson, Y. Yampol’skii, P.G.T. Fogg, J. Phys. Chem. Ref. Data 28, 1255 (1999)

    ADS  Article  Google Scholar 

  25. 25.

    N. Idrissi-Kandri, A. Ayral, C. Guizard, E.H.E Ghadraoui, L. Cot, Mater. Lett. 40, 52 (1999)

    Article  Google Scholar 

  26. 26.

    J.E. Blendell, H.K. Bowen, R.L. Coble, Amer. Ceramic Soc. Bull. 63, 797 (1984)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Drobek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drobek, M., Ayral, A., Motuzas, J. et al. Novel concept for the preparation of gas selective nanocomposite membranes. Eur. Phys. J. Spec. Top. 224, 1921–1933 (2015).

Download citation


  • Oligomer
  • European Physical Journal Special Topic
  • Composite Membrane
  • Ceramic Membrane
  • Nanocomposite Membrane