The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1921–1933 | Cite as

Novel concept for the preparation of gas selective nanocomposite membranes

  • M. DrobekEmail author
  • A. Ayral
  • J. Motuzas
  • C. Charmette
  • C. Loubat
  • E. Louradour
  • D. Dhaler
  • A. Julbe
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


In this work we report on a novel concept for the preparation of gas selective composite membranes by a simple and robust synthesis protocol involving a controlled in-situpolycondensation of functional alkoxysilanes within the pores of a mesoporous ceramic matrix. This innovative approach targets the manufacture of thin nanocomposite membranes, allowing good compromise between permeability, selectivity and thermomechanical strength. Compared to simple infiltration, the synthesis protocol allows a controlled formation of gas separation membranes from size-adjusted functional alkoxysilanes by a chemical reaction within the mesopores of a ceramic support, without any formation of a thick and continuous layer on the support top-surface. Membrane permeability can thus be effectively controlled by the thickness and pore size of the mesoporous layer, and by the oligomers chain length. The as-prepared composite membranes are expected to possess a good mechanical and thermomechanical resistance and exhibit a thermally activated transport of He and H2 up to 150 °C, resulting in enhanced separation factors for specific gas mixtures e.g. FH2/CO ∼ 10; FH2/CO2 ∼ 3; FH2/CH4 ∼ 62.


Oligomer European Physical Journal Special Topic Composite Membrane Ceramic Membrane Nanocomposite Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ayral, A. Julbe, G. Centi, N. Kanellopoulos, Ceramic membranes for gas treatment and Separation, in Nanoporous Materials for Energy and the Environment, edited by N. Kanellopouslos (Stanford Publishing Pte. Ltd, 2012)Google Scholar
  2. 2.
    Y.H. Ma, Hydrogen Separation Membranes, in: Advanced Membrane Technology and Applications, edited by N.N. Li (John Wiley & Sons, Inc., 2008)Google Scholar
  3. 3.
    A. Brunetti, G. Barbieri, E. Drioli, Gas Separation, Applications, in Encyclopedia of Membrane Science and Technology, edited by E.M.V. Hoek, V.V. Tarabara (John Wiley & Sons, Inc., 2013)Google Scholar
  4. 4.
    N. Benes, J.D.F. Ramsay, C. Guizard, Recent Advances in Gas Separation by Microporous Ceramic Membranes, edited by N.K. Kanellopoulos (Elsevier, 2000)Google Scholar
  5. 5.
    P. Pandey, R.S. Chauhan, Prog. Polym. Sci. 26, 853 (2001)CrossRefGoogle Scholar
  6. 6.
    G. Maier, Angew. Chem. Int. Edit. 37, 2960 (1998)CrossRefGoogle Scholar
  7. 7.
    W.J. Koros, Macromol. Symp. 188, 13 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Anderson, H. Wang, Y.S. Lin, Rev. Chem. Eng. 28, 101 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K Jeong, Ind. Eng. Chem. Res. 51, 2179 (2012)CrossRefGoogle Scholar
  10. 10.
    S.J. Miller, W.J. Koros, D.Q. Vu, Surf. Sci. Sci. Catal. 170, 1590 (2007)CrossRefGoogle Scholar
  11. 11.
    F. Peng, L. Lu, H. Sun, Y. Wang, J. Liu, Z. Jiang, Chem. Mater. 17, 6790 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, J. Mater. Chem. 1, 10058 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Drobek, A. Ayral, A. Julbe, C. Charmette, J. Motuzas, C. Loubat, E. Louradour, N. Del Bianco, Composite membranes, the preparation method and uses thereof, WO 2014016524 A1 2014013 (2014)Google Scholar
  14. 14.
    W. Yoshida, Y. Cohen, J. Membr. Sci. 213, 145 (2003)CrossRefGoogle Scholar
  15. 15.
    H. Cong, M. Radosz, B.F. Towler, Y. Shen, Sep. Purif. Technol. 55, 281 (2007)CrossRefGoogle Scholar
  16. 16.
    F. Xiangli, Y. Chen, W. Jin, N. Xu, Ind. Eng. Chem. Res. 46, 2224 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Drobek, J. Motuzas, V. Durand, M. Duchateau, C. Charmette, A. Hertz, C. Loubat, A. Julbe, J. Membr. Sci. 429, 428 (2013)CrossRefGoogle Scholar
  18. 18.
    H.L. Castricum, G.G. Paradis, M.C. Mittelmeijer-Hazeleger, R. Kreiter, J.F. Vente, J.E. ten Elshof, Adv. Funct. Mater. 21, 2319 (2011)CrossRefGoogle Scholar
  19. 19.
    T.A. Peters, C.H.S. Poeth, N.E. Benes, H.C.W.M. Buijs, F.F. Vercauteren, J.T.F. Keurentjes 276, 42 (2006)Google Scholar
  20. 20.
    W. Wei, S. Xia, G. Liu, X. Dong, W. Jin, N. Xu, J. Membr. Sci. 375, 334 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Cao, T. Zhang, Q.T. Nguyen, Y. Zhang, Z. Ping, J. Membr. Sci. 312, 15 (2008)CrossRefGoogle Scholar
  22. 22.
    R. Kreiter, D.P. Wolfs, C.W.R. Engelen, H.M. van Veen, J.F. Vente, J. Membr. Sci. 319, 126 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Lin, B.D. Freeman, J. Membr. Sci. 239, 105 (2004)CrossRefGoogle Scholar
  24. 24.
    R. Paterson, Y. Yampol’skii, P.G.T. Fogg, J. Phys. Chem. Ref. Data 28, 1255 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    N. Idrissi-Kandri, A. Ayral, C. Guizard, E.H.E Ghadraoui, L. Cot, Mater. Lett. 40, 52 (1999)CrossRefGoogle Scholar
  26. 26.
    J.E. Blendell, H.K. Bowen, R.L. Coble, Amer. Ceramic Soc. Bull. 63, 797 (1984)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Drobek
    • 1
    Email author
  • A. Ayral
    • 1
  • J. Motuzas
    • 1
  • C. Charmette
    • 1
  • C. Loubat
    • 2
  • E. Louradour
    • 3
  • D. Dhaler
    • 3
  • A. Julbe
    • 1
  1. 1.Institut Européen des Membranes, ENSCM-UM2-CNRS UMR5635, Université de MontpellierMontpellier Cedex 5France
  2. 2.Specific Polymers, ZAC Via DomitiaCastriesFrance
  3. 3.Céramiques Techniques et IndustriellesSalindresFrance

Personalised recommendations