The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1849–1859 | Cite as

A fatal damage of the water dissociation equilibrium on a photocatalyst surface in situ: A real or an imaginary danger?

  • A. EvstratovEmail author
  • R. Garban
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


The surfaces of photocatalytic materials are extremely hydrophilic and so always overcharged, in standard and near standard conditions, in adsorbed water. As shown in the present study, the water adsorbed on the surface of a photocatalyst in operation is deeply dissociated. Its released cationic part, namely the hydronium ions H+, stays not involved in the photocatalytic oxidation process. If no compensatory mechanism exists allowing efficient elimination of the H+ ions from the adsorbed water, a strongly concentrated acid solution may be formed (pHsurf → 0) during a few seconds after the photocatalytic process starts. The current study highlights a particular role of the adsorbed molecular oxygen (AMO) permanently occurring on the photocatalyst surface. Besides of its frequently referred free electron scavenging ability, the AMO ensures a continuous maintenance of the surface acid-base equilibrium at a near-neutral pH thus protecting a photocatalyst in operation against an inevitable and rapid acid destruction.


Volatile Organic Compound European Physical Journal Special Topic Adsorbed Water Photocatalytic Oxidation Hydroxyl Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Coronado, M.E. Zorn, I. Tejedor-Tejedor, M.A. Anderson, Appl. Catalysis B: Environmental 43, 329 (2003)CrossRefGoogle Scholar
  2. 2.
    K. Pomoni, A. Vomvas, C. Trapalis Thin Solid Films 479, 160 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    X. Pang, C. Chen, H. Ji, et al., Molecules 19, 16291 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Nosaka, M. Nishikawa, A.Y. Nosaka, Molecules 19, 18248 (2014)CrossRefGoogle Scholar
  5. 5.
    A.Y. Nosaka, Y. Nosaka, Joint International Meeting of the Electrochemical Society and the Electrochemical Society of Japan (October 03rd – 08th (Honolulu, Hawaii, USA, 2004), abstact 1536, 1 (2004)Google Scholar
  6. 6.
    M.A. Hendreson, W.E. Epling, C.L. Perkins, C.H. Peden, J. Phys. Chem. B 103, 5328 (1999)CrossRefGoogle Scholar
  7. 7.
    L.E. Walle, A. Borg, E.M.J. Johansson, et al., J. Phys. Chem. C 115, 9545 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Garban, A. Evstratov, J.-M. Taulemesse, C. Chis, NanoThailand International Symposium 2010 (November 18th – 20th, Bangkok, Thailand), Book of Abstracts, contribution P-EE-12 (2010), p. 129Google Scholar
  9. 9.
    A.A. Malygin, Natural Microporous Materials in Environmental Technology, NATO Science Series 362, 497 (1999)Google Scholar
  10. 10.
    B.S. Lim, A. Rahtu, Gordon, Nat. Mater 2, 749 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A. Evstratov, A. Grishin, J.-C. Roux, 3rdEuropean Conference on NanoFilms (July 07th – 11th, 2014, Seville, Spain), Book of Abstracts (2014), p. 58Google Scholar
  12. 12.
    H. Kisch, (ed.), Semiconductor Photocatalysis: Principles and Application, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014), doi: 10.1002/9783527673315Google Scholar
  13. 13.
    Y. Luan, P. Fu, X. Dai, Surf. Rev. Lett 13, 429 (2006)CrossRefGoogle Scholar
  14. 14.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  15. 15.
    P. Wolkoff, G.D. Nielsen, Atmos. Environ 35, 4407 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    W.K. Jo, K.H. Park, Chemosphere 57, 555 (2004)CrossRefGoogle Scholar
  17. 17.
    R. Garban, Supported interactive nanocomposites as contemporary photocatalysts and germicidal materials: concepts and applications, Doctoral thesis, 2011 (original French version is available at, p. 190
  18. 18.
    K. Demeestere, J. Dewulf, H.V. Langenhove, B. Sercu, Chem. Eng. Sci 58, 2255 (2003)CrossRefGoogle Scholar
  19. 19.
    NIST Chemistry WebBook (Standard Reference Database 69),
  20. 20.
    A. Evstratov, C. Chis, J.-M. Taulemesse, et al., 9thWorld Nanotechnology Conference NSTI Nanotech (May 7th – 11th, Boston, USA), Proceedings, 1, 9 (2006)Google Scholar
  21. 21.
    A. Evstratov, C.A. Malygin, et al., Russ. J. Gen. Chem 78, 1070 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Ecole des Mines d’Alès, Centre des Matériaux des Mines d’Alès (C2MA)Alès CedexFrance
  2. 2.Ecole des Mines d’Alès, Innov’UpAlès CedexFrance

Personalised recommendations