The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1749–1768 | Cite as

A comprehensive multiscale moisture transport analysis: From porous reference silicates to cement-based materials

  • H. Chemmi
  • D. PetitEmail author
  • V. Tariel
  • J-P. Korb
  • R. Denoyel
  • R. Bouchet
  • P. Levitz
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


Natural and manufactured disordered systems are ubiquitous and often involve hierarchical structures. This structural organization optimizes defined physical properties at several scales from molecular to representative volumes where the usual homogenization approach becomes efficient. For studying a particular physical property on these systems it is thus required to use a general method of analysis based on the joint application of complementary techniques covering the whole set of time-and length-scales. Here we review a comprehensive multiscale method presented for analyzing the three-dimensional moisture transport in hierarchical porous media such as synthesized reference silicates and cement-based materials. Several techniques (NMR spectroscopy, relaxometry, diffusometry, X-ray micro-tomography, conductivity…) have been used to evidence the interplay between the different scales involved in this transport process. This method allows answering the general opened questions concerning the scale dependence of such a moisture transport in cement-based materials. We outline the main results of the multiscale techniques applied on reference porous silicates allowing separating the impact of geometry, hydric state and wettability on the moisture transport. Based on this approach, we prove that this transport at micro- and meso-scale is determinant to modify the moisture at macro-scale during setting or for hardened cement-based materials.


European Physical Journal Special Topic Moisture Transport Cement Paste Hydric State Proton Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.A. Akay, E. Baer, M. Sarikaya, D.A. Tirrell, Hierachically Structured Materials, MRS Symposium Proceeding 255 (Cambridge University Press, 1992)Google Scholar
  2. 2.
    P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 52, 1263 (2007)CrossRefGoogle Scholar
  3. 3.
    R. Weinkamer, P. Fratzl, Mater. Sci. Eng. C 31, 1164 (2011)CrossRefGoogle Scholar
  4. 4.
    J.W.C. Dunlop, P. Fratzl, Scripta Mater. 68, 8 (2013)CrossRefGoogle Scholar
  5. 5.
    M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, Y. Seki, Prog. Mater. Sci. 53, 1 (2008)CrossRefGoogle Scholar
  6. 6.
    D.S. Grebenkov, M. Filoche, B. Sapoval, M. Felici, Phys. Rev. Lett. 94, 050602 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    M. Florens, B. Sapoval, M. Filoche, Phys. Rev. Lett. 106, 178104 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M. Florens, B. Sapoval, M. Filoche, J. Appl. Physiol. 110, 756 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Plassais, M.P. Pomies, N. Lequeux, J.-P. Korb, D. Petit, F. Barberon, B. Bresson, Phys. Rev. E. 72, 041401 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    C. Porteneuve, J.-P. Korb, D. Petit, Cement Concr. Res. 32, 97 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Philippot, J.-P. Korb, D. Petit, G. Counio, H. Zanni, J. Chim. Phys. 95, 332 (1998)CrossRefGoogle Scholar
  12. 12.
    O. Coussy, Mécanique des milieux poreux (Editions TECHNIP, 1991)Google Scholar
  13. 13.
    O. Coussy, Poromechanics, 2Rev Ed. (Wiley-Blackwell, 2003)Google Scholar
  14. 14.
    O. Coussy, Mechanics and Physics of Porous Solids (Wiley-Blackwell, 2010)Google Scholar
  15. 15.
    H. Chemmi, D. Petit, P. Levitz, J.-P. Korb, M. Berard, Diffusion-Fund. 10, 4.1 (2009)Google Scholar
  16. 16.
    H. Chemmi, D. Petit, P. Levitz, J.-P. Korb, C.R. Chimie 13, 405 (2010)CrossRefGoogle Scholar
  17. 17.
    J.-M. Torrenti, O. Didry, J.-P. Ollivier, F. Plas, La degradation des bétons (Hermes, 1999)Google Scholar
  18. 18.
    F.-J. Ulm, O. Coussy, Mechanics and Durability of Solids, Vol. I (Prentice Hall, 2002)Google Scholar
  19. 19.
    J-P. Ollivier, A. Vichot, La durabilité des bétons (Presses Ponts et Chaussées, 2008)Google Scholar
  20. 20.
    J.-D. Grunwaldt, J.B. Wagner, R.E. Dunin-Borkowski, Chem. Cat. Chem 5, 62 (2013)Google Scholar
  21. 21.
    M. Salciccioli, M. Stamatakis, S. Caratzoulas, D.G. Vlachos, Chem. Eng. Sci. 66, 4319 (2011)CrossRefGoogle Scholar
  22. 22.
    R. Lakes, Nature 361, 511 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    B. Coasne, A. Galarneau, C. Gerardin, F. Fajula, F. Villemot, Langmuir 29, 7864 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Galarneau, J. Iapichella, K. Bonhomme, F. Di Renzo, P. Kooyman, O. Terasaki, F. Fajula, Adv. Functional Mater. 16, 1657 (2006)CrossRefGoogle Scholar
  25. 25.
    D.N. Theodorou, Chem. Eng. Sci. 62 5697 (2007)CrossRefGoogle Scholar
  26. 26.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)Google Scholar
  27. 27.
    M. Doi, S. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1986)Google Scholar
  28. 28.
    J. des Cloizeaux, G. Jannink, Polymers in Solution (Oxford University Press, 1989)Google Scholar
  29. 29.
    J.P. Cohen-Addad, Progr. NMR Spectrosc. 25, 1 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    W.L. Oberkampfa, T. G. Trucano, Progr. Aerospace Sci. 38, 209 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    I. Nischang, U. Tallarek, Electrophoresis 28, 611 (2007)CrossRefGoogle Scholar
  32. 32.
    M.R. Bonilla, R. Valiullin, J. Kärger, S.K. Bhatia, J. Phys. Chem. C 118, 14355 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Aouissi, J.C. Pouget, H. Boudhraa, G. Storer, C. Cudennec, Geomorphologie-Relief Proc. Env. 1, 7 (2013)CrossRefGoogle Scholar
  34. 34.
    K.G. Jencso, B.L. McGlynn, Water Resour. Res. 47, W11527 (2011)ADSGoogle Scholar
  35. 35.
    A. Borghi, P. Renard, S. Jenni, J. Hydrology 414–415, 516 (2012)CrossRefGoogle Scholar
  36. 36.
    V. Guerriero, S. Mazzoli, A. Iannace, S. Vitale, A. Carravetta, C. Strauss, Marine Petrol. Geol. 40, 115 (2013)CrossRefGoogle Scholar
  37. 37.
    J.L. Bouvard, D.K. Ward, D. Hossain, S. Nouranian, E.B. Marin, M.F. Horstemeyer, J. Eng. Mat. Techno. 131, 041206 (2009)CrossRefGoogle Scholar
  38. 38.
    J.-F. Dufrêche, B. Rotenberg, V. Marry, P. Turq, Anais da Academia Brasileira de Ciências 82, 61 (2010)CrossRefGoogle Scholar
  39. 39.
    H.J. Jeon, C.G. Simon, G.H. Kim, Biomed. Mater. Res. Part B 102B(i7), 1580 (2014)CrossRefGoogle Scholar
  40. 40.
    G.E. Kapellos, T.S. Alexiou, A.C. Payatakes, Math. Biosci. 225, 83 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Prog. Mater. Sci. 54, 1059 (2009)CrossRefGoogle Scholar
  42. 42.
    M.J. Buehler, T. Ackbarow, Comp. Meth. Biomech. Biomed. Eng. 11(6), 595 (2008)CrossRefGoogle Scholar
  43. 43.
    J. Keener, J. Sneyd, Mathematical Physiology (Springer-Verlag, 2001)Google Scholar
  44. 44.
    M. Lin, G.M. Genin, F. Xu, T. Lu, Appl. Mech. Rev. 66, 030801 (2014)CrossRefGoogle Scholar
  45. 45.
    J.R. Porter, T.T. Ruckh, K.C. Popat, AIChE Biotechnol. Prog. 25, 1539 (2009)Google Scholar
  46. 46.
    E. Beniash, WIREs Nanomed. Nanobiotechnol. 3, 47 (2011)CrossRefGoogle Scholar
  47. 47.
    E. Hamed, I. Jasiuk, Mater. Sci. Eng. R 73, 27 (2012)CrossRefGoogle Scholar
  48. 48.
    R.E. McMahon, L. Wang, R. Skoracki, A.B. Mathur, J. Biomed. Mater. Res. Part B 101B, 387 (2013)CrossRefGoogle Scholar
  49. 49.
    A. Hoffmann, G. Gross, Int. Orthopaedics (SICOT) 31, 791 (2007)CrossRefGoogle Scholar
  50. 50.
    I. Ilie, R. Ilie, T. Mocan, D. Bartos, L. Mocan, Internat. J. Nanomedicine 7, 2211 (2012)Google Scholar
  51. 51.
    Ed Bullmore, A. Barnes, D.S. Bassett, A. Fornito, M. Kitzbichler, D. Meunier, J. Suckling, NeuroImage 47, 1125 (2009)CrossRefGoogle Scholar
  52. 52.
    F. Klimm, D.S. Bassett, J.M. Carlson, P.J. Mucha, PLoS Comput. Biol. 10, e1003491 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    D. Samu1, A.K. Seth, T. Nowotny, PLoS Comput. Biol. 10, e1003557 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    C. Viney, Mater. Sci. Eng. 10, 187 (1993)Google Scholar
  55. 55.
    C. Tamerler, Candan M. Sarikaya, Phil. Trans. R. Soc. A 367, 1705 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    B. Bhushan Phil. Trans. R. Soc. A 367, 1445 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    T. Sun, G. Qing, B. Su, L. Jiang, Chem. Soc. Rev. 40, 2909 (2011)CrossRefGoogle Scholar
  58. 58.
    Z. Qin, L. Dimas, D. Adler, G. Bratzel, M.J. Buehler, J. Phys. Condens. Matter. 26, 073101 (2014)CrossRefGoogle Scholar
  59. 59.
    L. Dormieux, F.-J. Ulm, Applied Micromechanics of Porous Materials (Springer Vienna, 2005)Google Scholar
  60. 60.
    L. Dormieux, Microstructure et Propriétés des Matériaux (Ponts & Chaussées Édit, 2005)Google Scholar
  61. 61.
    L. Dormieux, D. Kondo, F.-J. Ulm, Microporous Mechanics (Wiley-Blackwell, 2006)Google Scholar
  62. 62.
    E. Masoero, H.M. Jennings, F.-J. Ulm, E. Del Gado, H. Manzano, R.J.M. Pellenq, S. Yip, in Computational Modelling of Concrete Structures, Vol. 1 (CRC Press-Taylor & Francis group, 2014), p. 139Google Scholar
  63. 63.
    S. Torquato, Random Heterogeneous Materials (Springer-Verlag Corr. ed, 2005)Google Scholar
  64. 64.
    E. Weinan, Principles of Multiscale Modeling (Cambridge University Press, 2011)Google Scholar
  65. 65.
    H. Chemmi, Ph.D. thesis, Ecole Polytechnique, France (2011) < pastel-00671390>Google Scholar
  66. 66.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman & Co Ltd., 1982)Google Scholar
  67. 67.
    K. Falconer, Fractal Geometry, 3 ed. (Wiley, 2014)Google Scholar
  68. 68.
    J.-F. Gouyet, Physics and Fractal Structures (Masson, Springer-Verlag, 1996)Google Scholar
  69. 69.
    A. Aharony, J. Feder, Fractals in Physics (Amsterdam North-Holland, 1990)Google Scholar
  70. 70.
    A. Bunde, S. Havlin, Fractals and Disordered Systems, 2nd ed. (Springer-Verlag, 1996)Google Scholar
  71. 71.
    D. Avnir, The fractal approach to heterogeneous chemistry (Wiley, 1989)Google Scholar
  72. 72.
    B. Sapoval, Universalités et fractales (Flammarion, 2001)Google Scholar
  73. 73.
    V. Fleury, J.-F. Gouyet, M. Leonetti, Branching in Nature (Springer-Verlag, 2001)Google Scholar
  74. 74.
    J.-P. Korb., D. Petit, S. Philippot, H. Zanni, V. Marret, M. Cheyrezy, Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials (Springer-Verlag, 1998), p. 333Google Scholar
  75. 75.
    C. Porteneuve, H. Zanni, J.-P. Korb, D. Petit, C.R. Acad. Sci., Chimie 4, 809 (2001)Google Scholar
  76. 76.
    B. Sapoval, S. Russ, J.-P. Korb, D. Petit, Fractals 4, 453 (1996)CrossRefGoogle Scholar
  77. 77.
    B. Sapoval, S. Russ, D. Petit, J.-P. Korb, Magn. Res. Imag. 14, 863 (1996)CrossRefGoogle Scholar
  78. 78.
    P. Adler, Porous Media: Geometry and Transports (Butterworth Heinemann, 1992)Google Scholar
  79. 79.
    M. Han, M. Fleury, P. Levitz, International Symp. Society of Core Analysts (Sept. 2007)Google Scholar
  80. 80.
    M. Han, V , Tariel, S. Youssef, E. Rosenber, M. Fleury, P. Levitz, SPWLA 49th Annual Logging Symposium, May 25–28 (2008)Google Scholar
  81. 81.
    P. Levitz, V. Tariel, M. Stampanoni, E. Gallucci, Eur. Phys. J. Appl. Phys. 60, 24202 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    M. Han, Ph.D. thesis, Ecole Polytechnique, France, 2009Google Scholar
  83. 83.
    M. Han, S. Youssef, E. Rosenberg, M. Fleury, P. Levitz, Phys. Rev. E 79, 031127 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    A.H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    P. Midgley, A. Dunin-Borkowski, E. Rafal, Nat. Mater. 8, 271 (2009)ADSCrossRefGoogle Scholar
  86. 86.
    A.H. Zewail, Phil. Trans. R. Soc. A 368, 1191 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988)Google Scholar
  88. 88.
    S. Brisard, R.S. Chae, I. Bihannic, L. Michot, P. Guttmann, J. Thieme, J. Schneider, P.J.M. Monteiro, P. Levitz, Am. Mineral. 97, 480 (2012)CrossRefGoogle Scholar
  89. 89.
    J. Serra, Image Analysis and Mathematical Morphology (Academic Press, London, 1982)Google Scholar
  90. 90.
    V. Tariel, Ph.D. thesis, Ecole Polytechnique, France, 2009Google Scholar
  91. 91.
    P Levitz, Osteoporos Int. 18, 837 (2007)CrossRefGoogle Scholar
  92. 92.
    P. Levitz, Cem. Concr. Res. 37, 351 (2007)CrossRefGoogle Scholar
  93. 93.
    P. Levitz, edited by F. Schüth, K.S.W. Sing, J. Weitkamp, Handbook of Porous Solids, Vol. 1 (Wiley-VCH, 2002), p. 37Google Scholar
  94. 94.
    F. Rouquerol, J. Rouquerol, P. Llewellyn, K.S.W. Sing, G. Maurin, Adsorption by Powders and Porous Solids, 2nd Ed. (Academic Press, 2013)Google Scholar
  95. 95.
    J. Rouquerol, G V. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, K. Unger, Micropor. Mesopor. Mater. 154, 2 (2012)CrossRefGoogle Scholar
  96. 96.
    J. Rouquerol, G Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, K. Unger, Pure Appl. Chem 84(1), 107 (2011)CrossRefGoogle Scholar
  97. 97.
    H. Giesche, edited by F. Schueth, K.S.W. Sing, J. Weitkamp, Handbook of Porous Solids, Vol. 1 (Wiley-VCH, 2002), p. 309Google Scholar
  98. 98.
    L.K. Barrett, C.S. Yust, Metallography 3, 1 (1970)CrossRefGoogle Scholar
  99. 99.
    C. Lin, M.H. Cohen, J. Appl. Phys. 59, 328 (1994)Google Scholar
  100. 100.
    L. Pothuaud, P. Porion, E. Lespessailles, C.L. Benhamou, P. Levitz, J. Microsc. 199, 2, 149 (2000)CrossRefGoogle Scholar
  101. 101.
    F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure, 2nd ed. (Academic Press, 1992)Google Scholar
  102. 102.
    M. Barrande, R. Bouchet, R. Denoyel, Anal. Chem. 79, 9115 (2007)CrossRefGoogle Scholar
  103. 103.
    J.-P. Korb, A. Delville, Shu Xu, G. Demeulenaere, P. Costa, J. Jonas, J. Chem. Phys. 101, 7074 (1994)ADSCrossRefGoogle Scholar
  104. 104.
    J.-P. Korb, M. Whaley-Hodges, R.G. Bryant, Phys. Rev. E 56, 1934 (1997)ADSCrossRefGoogle Scholar
  105. 105.
    J.-P. Korb, M. Whaley Hodges, Th. Gobron, R.G. Bryant, Phys. Rev. E 60, 3097 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    F. Barberon, J.-P. Korb, D. Petit, V. Morin, E. Bermejo, Phys. Rev. Lett. 90, 116103 (2003)ADSCrossRefGoogle Scholar
  107. 107.
    L. Patural, J.-P. Korb, A. Govin, P. Grosseau, B. Ruotc, O. Devès, Cement Concr. Res. 42, 1371 (2012)CrossRefGoogle Scholar
  108. 108.
    J.-P. Korb, G. Freiman, B. Nicot, P. Ligneul, Phys. Rev. E 80, 061601 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    J.-P. Korb, B. Nicot, A. Louis-Joseph, S. Bubici, G. Ferrante, J. Phys. Chem. C 118, 23212 (2014)CrossRefGoogle Scholar
  110. 110.
    C. Tourné-Peteilh, Ph.D. thesis, Université de Montpellier 1, France, 2004Google Scholar
  111. 111.
    K. Nakanichi, J. Porous Mater. 4, 67 (1997)CrossRefGoogle Scholar
  112. 112.
    R. Kimmich, Principles of Soft-Matter Dynamics (Springer, 2012)Google Scholar
  113. 113.
    R. Kimmich, Tomography, Diffusometry, Relaxometry (Springer-Verlag, 1997)Google Scholar
  114. 114.
    M.H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd Ed. (Wiley-Blackwell, 2008)Google Scholar
  115. 115.
    M. Mehring, Principles of High Resolution N.M.R. in Solids, 2nd ed. (Springer-Verlag, 1983)Google Scholar
  116. 116.
    F. Noack, Prog. Nucl. Magn. Reson. Spectrosc. 18, 171 (1986)CrossRefGoogle Scholar
  117. 117.
    R. Kimmich, E. Anoardo, Prog. Nucl. Magn. Reson. Spectrosc. 44, 257 (2004)CrossRefGoogle Scholar
  118. 118.
    W.S. Price, NMR Studies of Translational Motion: Principles and Applications (Cambridge University Press, 2009)Google Scholar
  119. 119.
    P.T. Callaghan, Translational Dynamics & Magnetic Resonance (Oxford University Press, 2011)Google Scholar
  120. 120.
    S. Rodts, P. Levitz, Magn. Reson. Imaging 19, 465 (2001)CrossRefGoogle Scholar
  121. 121.
    P. Levitz, S. Rodts, Ann. Chim. Sci. Mat. 30, 345 (2005)CrossRefGoogle Scholar
  122. 122.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford University Press, 1991)Google Scholar
  123. 123.
    B. Blümich, NMR Imaging of Materials (Clarendon Press, 2003)Google Scholar
  124. 124.
    B. Blümich, Spatially Resolved Magnetic Resonance (Wiley VCH, 1998)Google Scholar
  125. 125.
    S. Stapf, S.-I Han (eds.), NMR Imaging in Chemical Engineering (Wiley VCH, 2006)Google Scholar
  126. 126.
    F. Leroux, J. Russia, C. Cau-dit-Coumes, F. Frizon, G. Renaudin, J. Am. Ceram. Soc. 94, 2680 (2011)CrossRefGoogle Scholar
  127. 127.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  128. 128.
    G. Ferrante, S. Sykora, Adv. Inorg. Chem. 57, 405 (2005)CrossRefGoogle Scholar
  129. 129.
    K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19, 2446 (1979)ADSCrossRefGoogle Scholar
  130. 130.
    A. Gerschel, Liaisons Intermoleculaire (InterEdition, 1995)Google Scholar
  131. 131.
    S. Godefroy, J.-P. Korb, M. Fleury, R.G. Bryant, Phys. Rev. E 64, 021605 (2001)ADSCrossRefGoogle Scholar
  132. 132.
    R.K. Iler, The Chemistry of Silica (John Wiley & Sons, 1979)Google Scholar
  133. 133.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, 1961)Google Scholar
  134. 134.
    V. Bakhmutov, Practical NMR Relaxation for Chemists (John Wiley & Sons, 2004)Google Scholar
  135. 135.
    J. Kowalewski, L. Mäler, Nuclear Relaxation in Liquids: Theory, Experiments, and Applications (CRC Press, Taylor & Francis Group, 2006)Google Scholar
  136. 136.
    O. Saengsawang, T. Remsungnen, S. Fritzsche, R. Haberlandt, S. Hannongbua, J. Phys. Chem. B, 109, 5684 (2005)CrossRefGoogle Scholar
  137. 137.
    P. Levitz, J.-P. Korb, D. Petit, Eur. Phys. J. E 12, 29 (2003)CrossRefGoogle Scholar
  138. 138.
    P. Levitz, J.-P. Korb, Europhys. Lett. 70, 684 (2005)ADSCrossRefGoogle Scholar
  139. 139.
    L. Pautrot-D’Alencon, Ph.D. thesis, Ecole Polytechnique, France, 2006 < pastel-00002179>Google Scholar
  140. 140.
    L. Venkataramanan, Y.Q. Song, M.D. Hurlimann, IEEE Trans. Signal Process. 50, 1017 (2002)MathSciNetADSCrossRefGoogle Scholar
  141. 141.
    Y.Q. Song, L. Venkataramanan, M.D. Hurlimann, M. Flaum, P. Frulla, C. Straley, JMR 154, 261 (2002)CrossRefGoogle Scholar
  142. 142.
    P.J. McDonald, J.-P. Korb, J. Mitchell, L. Monteilhet, Phys. Rev. E 72, 011409 (2005)ADSCrossRefGoogle Scholar
  143. 143.
    L. Monteilhet, J.-P. Korb, J. Mitchell, P.J. McDonald, Phys. Rev. E 74, 061404 (2006)ADSCrossRefGoogle Scholar
  144. 144.
    N. Nestle, P. Galvosas, O. Geier, C. Zimmermann, M. Dakkouri, J. Kärger, J. Appl. Phys. 89, 8061 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • H. Chemmi
    • 1
  • D. Petit
    • 1
    Email author
  • V. Tariel
    • 1
  • J-P. Korb
    • 1
  • R. Denoyel
    • 2
  • R. Bouchet
    • 2
  • P. Levitz
    • 3
  1. 1.Physique de la Matière Condensée, Ecole Polytechnique, CNRS-UMR 7643PalaiseauFrance
  2. 2.MADIREL, Aix-Marseille Université, CNRS-UMR 7246Marseille Cedex 20France
  3. 3.Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, CNRS-UMR 8234, Université Pierre et Marie CurieParis Cedex 5France

Personalised recommendations