The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1737–1747 | Cite as

Mesoporous polyurethane aerogels for thermal superinsulation: Textural properties and thermal conductivity

  • N. Diascorn
  • H. Sallee
  • S. Calas
  • A. RigacciEmail author
  • P. Achard
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


Organic aerogels based on polyurethane were elaborated via sol-gel synthesis and dried with supercritical carbon dioxide (CO2). The influence of the catalyst concentration was investigated, first in order to decrease the reaction kinetics, then to study its impact on the obtained materials properties. It was shown that this parameter also influences the global shrinkage and the bulk density of the resulting materials. Its effect on the dry materials was studied in terms of morphological, textural and thermal properties in order to determine the main correlations thanks to scanning electron microscopy (SEM), nitrogen adsorption, non-intrusive mercury porosimetry and thermal conductivity measurements. Results allowed us to demonstrate a correlation between the bulk density, the texture and the thermal conductivity of this family of polyurethane aerogels and to determine an optimal density range for thermal performance associated with a fine internal mesoporous texture.


Bulk Density Polyurethane Pore Size Distribution European Physical Journal Special Topic Catalyst Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Baetens, B.P. Jelle, J.V. Thue, M.J. Tenpierik, S. Grynning, S. Uvsløkk, A. Gustavsen, Energy Build. 42, 147 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Koebel, A. Rigacci, P. Achard, J. Sol-Gel Sci. Technol. 63, 315 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Ibrahim, P.H. Biwole, E. Wurtz, P. Achard, Build. Environ. 81, 112 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Stahl, S. Brunner, M. Zimmermann, K.G. Wakili, Energy Build. 44, 114 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Biesmans, D. Randall, E. Francais, M. Perrut, J. Non-Crystalline Solids 225, 36 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    R. Pirard, A. Rigacci, J.C. Maréchal, D. Quenard, B. Chevalier, P. Achard, J.P. Pirard, Polymer 44, 4881 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Rigacci, J.C. Marechal, M. Repoux, M. Moreno, P. Achard, J. Non-Crystalline Solids 350, 372 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M.A.B. Meador, L.A. Capadona, L. McCorkle, D.S. Papadopoulos, N. Leventis, Chem. Mater. 19, 2247 (2007)CrossRefGoogle Scholar
  9. 9.
    R.G. Smith, A. Vanterpool, H.J. Kulak, Canadian J. Chem. 47, 2015 (1969)CrossRefGoogle Scholar
  10. 10.
    K. Schwetlick, R. Noack, J. Chem. Soc., Perkin Trans. 2, 395 (1995)CrossRefGoogle Scholar
  11. 11.
    G.W. Scherer, D.M. Smith, D. Stein, J. Non-Crystalline Solids 186, 309 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    G. Reichenauer, G. Scherer, J. Non-Crystalline Solids 285, 167 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    R. Pirard, S. Blacher, J. Mater. Res. 10, 2114 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    F. Rouquerol, L. Luciani, Techniques De L’ingénieur P 1050, 1 (2003)Google Scholar
  15. 15.
    L. Weigold, D.P. Mohite, S. Mahadik-Khanolkar, N. Leventis, G. Reichenauer, J. Non-Crystalline Solids 368, 105 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    A. Bisson, A. Rigacci, D. Lecomte, P. Achard, J. Non-Crystalline Solids 350, 379 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, J. Non-Crystalline Solids 188, 226 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • N. Diascorn
    • 1
  • H. Sallee
    • 2
  • S. Calas
    • 3
  • A. Rigacci
    • 1
    Email author
  • P. Achard
    • 1
  1. 1.MINES ParisTech, PSL – Research University, PERSEE - Centre procédés, énergies renouvelables et systèmes énergétiquesSophia Antipolis CedexFrance
  2. 2.Centre Scientifique et Technique du BâtimentSaint Martin d’HèresFrance
  3. 3.Laboratoire Charles Coulomb (L2C) CC 074-UMR 5221 CNRS-UM2, Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations