Skip to main content
Log in

Analytical estimation of skeleton thermal conductivity of a geopolymer foam from thermal conductivity measurements

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The geopolymers are alumino-silicate binders. The addition of a high pores volume fraction, gives them a thermal insulation character desired in the building industry. In this work, potassium geopolymer foams were prepared at room temperature (< 70 ∘C) by a process of in situ gas release. The porosity distribution shows a multiscale character. However, the thermal conductivity measurements gave values from 0.35 to 0.12 Wm−1.K−1 for a pore volume fraction values between 65 and 85%. In the aim to predict the thermal properties of these foams and focus on the relationship “thermal-conductivity/microstructure”, knowledge of the thermal conductivity of their solid skeleton (λ s ) is paramount. However, there is rare work on the determination of this value depending on the initial composition. By the formulation used, the foaming agent contributes to the final network, and it is not possible to obtain a dense material designate to make a direct measurement of λ s . The objective of this work is to use inverse analytical methods to identify the value of λ s . Measurements of thermal conductivity by the fluxmetre technique were performed. The obtained value of the solid skeleton thermal conductivity by the inverse numerical technique is situated in a framework between 0.95 and 1.35 Wm−1.K−1 and is in agreement with one issue from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wastiels, X. Wu, S. Faignet, G. Patfoort, J. Resour. Manage. Tech. 22, 135 (1994)

    Google Scholar 

  2. P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. Van Deventer, Cement Concr. Res. 37, 1590 (2007)

    Article  Google Scholar 

  3. J. Davidovits, J. Therm. Analy. 37, 1633 (1991)

    Article  Google Scholar 

  4. J. Henon, A. Alzina, J. A. bsi, D.S. Smith, S. Rossignol, Ceram. Int. 38, 77 (2012)

    Article  Google Scholar 

  5. W. Schulle, E. Schlegel, Fundamentals and Properties of Refractory Thermal Insulating Materials (High-temperature Insulating Materials), Ceramic Monographs – Handbook of Ceramics, Supplement to Interceram 40(2.6.3) (1991)

  6. B. Schulz, J. Non-Equilib. Thermodyn. 3, 267 (1978)

    Google Scholar 

  7. P. Duxson, G.C. Luckey, J.S.J. Van Deventer, Ind. Eng. Chem. Res. 45, 7781 (2006)

    Article  Google Scholar 

  8. E. Prud’homme, Ph.D. thesis, University of Limoges, 2011

  9. J.C. Maxwell, Treatise on Electricity and Magnetism, Vol. 1, 3rd Ed. (Oxford University Press, 1904), p. 361

  10. Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962)

    Article  ADS  Google Scholar 

  11. R. Landauer, J. Appl. Phys. 23, 779 (1952)

    Article  ADS  Google Scholar 

  12. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 27, 1345 (2007)

    Article  Google Scholar 

  13. B. Schulz, High Temp. High Pres. 13, 649 (1981)

    Google Scholar 

  14. L. Rayleigh, On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of Medium, Philosophical Mag. 34, 481 (1892)

    Article  Google Scholar 

  15. E. Prud’homme, P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arrii-Clacens, J.M. Clacens, S. Rossignol, J. Eur. Ceram. Soc. 30, 1641 (2010)

    Article  Google Scholar 

  16. J. Hladik, Métrologie des propriétés thermophysiques des matériaux, Fluxmètres à gradient thermique (Edition Marson, Paris, 1990)

  17. J. Henon, A. Alzina, J. Absi, D.S. Smith, S. Rossignol, J. Porous Mat. 20, 37 (2013)

    Article  Google Scholar 

  18. R.C. WEAST (ed.), Handbook of Chemistry and Physics, 55th Ed. (CRC Press, Cleveland, Ohio, 1974)

  19. E.H. Kennard, Kinetic Theory of Gases (Edition McGraw-Hill, New York, 1938)

  20. J. Henon, F. Pennec, A. Alzina, J. Absi, D.S. Smith, S. Rossignol, Comput. Mat. Sci. 82, 264 (2014)

    Article  Google Scholar 

  21. S. Grandjean, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 26, 2669 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Absi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henon, J., Alzina, A., Absi, J. et al. Analytical estimation of skeleton thermal conductivity of a geopolymer foam from thermal conductivity measurements. Eur. Phys. J. Spec. Top. 224, 1715–1723 (2015). https://doi.org/10.1140/epjst/e2015-02493-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02493-8

Keywords

Navigation