The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1675–1687 | Cite as

Porous metal oxide microspheres from ion exchange resin

  • S. PicartEmail author
  • P. Parant
  • M. Caisso
  • E. Remy
  • H. Mokhtari
  • I. Jobelin
  • J.P. Bayle
  • C.L. Martin
  • P. Blanchart
  • A. Ayral
  • T. Delahaye
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700–800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.


Uranium Calcination Temperature European Physical Journal Special Topic Discrete Element Method Cerium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Homogeneous versus Heterogeneous Recycling of Transuranics in Fast Nuclear Reactors, OECD 2012, NEA No. 7077 (Paris, France, 2012)Google Scholar
  2. 2.
    D. Warin, J. Nucl. Sci. Technol. 44, 410 (2007)CrossRefGoogle Scholar
  3. 3.
    R. Dautray, J. Friedel, Y. Brechet, Comptes Rendus Physique 13, 480 (2012)CrossRefGoogle Scholar
  4. 4.
    E. D’Agata, P.R. Hania, S. Bejaoui, C. Sciolla, T. Wyatt, M.H.C. Hannink, N. Herlet, A. Jankowiak, F.C. Klaassen, J.-M. Lapetite, D.A. Boomstra, M. Phelip, F. Delage, Ann. Nucl. Energy 62, 40 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Prieur, A. Jankowiak, T. Delahaye, N. Herlet, P. Dehaudt, P. Blanchart, J. Nucl. Mater. 414, 503 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Prieur, A. Jankowiak, C. Leorier, N. Herlet, L. Donnet, P. Dehaudt, C. Maillard, J.-P. Laval, P. Blanchart, Powder Technol. 208, 553 (2011)CrossRefGoogle Scholar
  7. 7.
    D. Prieur, F. Lebreton, P.M. Martin, A. Jankowiak, T. Delahaye, P. Dehaudt, P. Blanchart, J. Eur. Ceram. Soc. 32, 1585 (2012)CrossRefGoogle Scholar
  8. 8.
    F. Lebreton, D. Horlait, T. Delahaye, P. Blanchart, J. Nucl. Mater. 439, 99 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Delahaye, F. Lebreton, D. Horlait, N. Herlet, P. Dehaudt, J. Nucl. Mater. 432, 305 (2013)CrossRefGoogle Scholar
  10. 10.
    F. Lebreton, D. Prieur, D. Horlait, T. Delahaye, A. Jankowiak, C. Léorier, F. Jorion, E. Gavilan, F. Desmoulière, J. Nucl. Mater. 438, 99 (2013)CrossRefGoogle Scholar
  11. 11.
    G.D. Del Cul, C. Matus, A.S. Icenhour, L.K. Felker, D.F. Williams, TM/2005/108 ORNL, 1–18 (2005)Google Scholar
  12. 12.
    S.L. Voit, I. Beta, C.J. Rawn ORNL/TM-2010/216, 1–17 (2010)Google Scholar
  13. 13.
    M. Vespa, M. Rini, J. Spino, T. Vitova, J. Somers, J. Nucl. Mater. 421, 80 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Schreinemachers, A.A. Bukaemskiy, M. Klinkenberg, S. Neumeier, G. Modolo, D. Bosbach, Prog. Nucl. Energy 72, 17 (2014)CrossRefGoogle Scholar
  15. 15.
    G.W. Weber, R.L. Beatty, V.J. Tennery, Nucl. Technol. 35, 217 (1977)Google Scholar
  16. 16.
    K.J. Notz, P.A. Haas, J.H. Shaffer, Radiochimica Acta 25, 153 (1978)CrossRefGoogle Scholar
  17. 17.
    S. Picart, H. Mokhtari, I. Ramière, I. Jobelin, IOP Conf. Ser. Mater. Sci. Eng. 9, 012025 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Picart, I. Ramieìre, H. Mokhtari, I. Jobelin, J. Phys. Chem. B 114, 11027 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Mokhtari, thesis of the University of Paris XI, 2008Google Scholar
  20. 20.
    E. Remy, S. Picart, S. Grandjean, T. Delahaye, N. Herlet, P. Allegri, O. Dugne, R. Podor, N. Clavier, P. Blanchart, A. Ayral, J. Eur. Ceram. Soc. 32, 3199 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Caisso, F. Lebreton, D. Horlait, S. Picart, P.M. Martin, R. Bès, C. Renard, P. Roussel, D.R. Neuville, K. Dardenne, J. Rothe, T. Delahaye, A. Ayral, J. Solid State Chem. 218, 155 (2014)CrossRefGoogle Scholar
  22. 22.
    R.B. Matthews, P.E. Hart, J. Nucl. Mater. 92, 207 (1980)CrossRefGoogle Scholar
  23. 23.
    E. Zimmer, C. Ganguly, J. Borchardt, H. Langen, J. Nucl. Mater. 152, 169 (1988)CrossRefGoogle Scholar
  24. 24.
    E. Remy, S. Picart, T. Delahaye, I. Jobelin, O. Dugne, I. Bisel, P. Blanchart, A. Ayral, J. Nucl. Mater. 448, 80 (2014)CrossRefGoogle Scholar
  25. 25.
    E. Remy, S. Picart, T. Delahaye, I. Jobelin, F. Lebreton, D. Horlait, I. Bisel, P. Blanchart, A. Ayral, J. Nucl. Mater. 453, 214 (2014)CrossRefGoogle Scholar
  26. 26.
    P. Haas, US. Patent 3, 800, 023 (1974)Google Scholar
  27. 27.
    S. Picart, H. Mokhtari, I. Jobelin, Patent, WO 2010/034716Google Scholar
  28. 28.
    F.R. Chattin, D.E. Benker, M.H. Lloyd, P.B. Orr, R.G. Ross, J.T. Wiggins, In Transplutonium Elements–Production and Recovery; American Chemical Society: Washington, DC 173 (1981)Google Scholar
  29. 29.
    F. de Dardel, T.V. Arden, Ion Exchangers, Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH (2000)Google Scholar
  30. 30.
    M.S. Wilson, A. Delariva, F.H. Garzon, J. Mater. Chem. 21, 7418 (2011)CrossRefGoogle Scholar
  31. 31.
    E. Remy, thesis of the University of Montpellier 2, 2013Google Scholar
  32. 32.
    Y. Hiramatsu, Y. Oka, Int. J. Rock Mech. Mining Sci. Geomech. Abstracts 3, 89 (1966)CrossRefGoogle Scholar
  33. 33.
    P. Pizette, C.L. Martin, G. Delette, J. Eur. Ceram. Soc. 33, 975 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Ganguly, Bull. Mater. Sci 16, 509 (1993)CrossRefGoogle Scholar
  35. 35.
    S. Yamagishi, Y. Takahashi, J. Nucl. Mater. 217, 127 (1994)CrossRefGoogle Scholar
  36. 36.
    C. Ganguly, P.V. Hegde, J. Sol-Gel Sci. Technol. 9, 285 (1997)Google Scholar
  37. 37.
    J.M. Heintz, J.C. Bernier, J. Mater. Sci. 21, 1569 (1986)CrossRefGoogle Scholar
  38. 38.
    R. Ferreira, E. Jordao, J. Nucl. Mater. 350, 271 (2006)CrossRefGoogle Scholar
  39. 39.
    D. Horlait, F. Lebreton, A. Gauthé, M. Caisso, B. Arab-Chapelet, S. Picart, T. Delahaye, J. Nucl. Mater. 444, 181 (2014)CrossRefGoogle Scholar
  40. 40.
    M.A. Pouchon, G. Ledergerber, F. Ingold, K. Bakker, in Comprehensive Nuclear Materials, edited by R.J.M. Konings (Elsevier, Oxford, 2012), p. 275Google Scholar
  41. 41.
    PELlets versus GRanulates: Irradiation, Manufacturing & Modelling, FP7 EC collaborative projectGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S. Picart
    • 1
    Email author
  • P. Parant
    • 1
  • M. Caisso
    • 1
    • 2
  • E. Remy
    • 1
  • H. Mokhtari
    • 1
  • I. Jobelin
    • 1
  • J.P. Bayle
    • 2
  • C.L. Martin
    • 3
  • P. Blanchart
    • 4
  • A. Ayral
    • 5
  • T. Delahaye
    • 1
  1. 1.CEA, Nuclear Energy Division, Radiochemistry and Processes DepartmentBagnols-sur-CèzeFrance
  2. 2.CEA, Nuclear Energy Division, Fuel Cycle Technology DepartmentBagnols-sur-CèzeFrance
  3. 3.Univ. Grenoble Alpes, CNRS, SIMAPGrenobleFrance
  4. 4.Heterogeneous Materials Research Group, Centre Européen de la CéramiqueLimogesFrance
  5. 5.Institut Européen des Membranes, CNRS-ENSCM-UM2, CC47, University Montpellier 2MontpellierFrance

Personalised recommendations