The European Physical Journal Special Topics

, Volume 224, Issue 8, pp 1541–1552 | Cite as

Synchronization and multistability in the ring of modified Rössler oscillators

Regular Article
Part of the following topical collections:
  1. Multistability: Uncovering Hidden Attractors

Abstract

We discuss the occurrence of various synchronous states in a ring of unidirectionally coupled modified Rössler oscillators. When systems are uncoupled we observe, single node has an infinite number of different states. When the coupling strength increases the infinitely many synchronous states appear. We show that all synchronous solutions are different and change with varying initial conditions. The analysis is performed for three and four coupled oscillators. At the end of the paper we discuss possible synchronization scenarios for larger networks with ring topology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Sausedo-Solorio, A.N. Pisarchik, Phys. Lett. A 375, 3677 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    U. Feudel, C. Grebogi, B.R. Hunt, J.A. Yorke, Phys. Rev. E 54, 71 (1996)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)CrossRefGoogle Scholar
  4. 4.
    A.N. Pisarchik, R. Jaimes-Reátegui, J.R. Villalobos-Salazar, J.H. García-López, S. Boccaletti, Phys. Rev. Lett. 96, 244102 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    T. Kapitaniak, J. Sound Vibr. 102, 440 (1985)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. Silchenko, T. Kapitaniak, V. Anishchenko, Phys. Rev. E 59, 1593 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    F.T. Arecchi, Chaos 1, 357 (1991)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.M. Saucedo-Solorio, A.N. Pisarchik, A.V. Kir’yanov, V. Aboites, J. Opt. Soc. Am. B 20, 490 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    G. Schwarz, C. Lehmann, E. Schöll, Phys. Rev. B 61, 10194 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    J. Huisman, F.J. Weissing, Amer. Natur. 157, 488 (2001)CrossRefGoogle Scholar
  11. 11.
    J. Foss, A. Longtin, B. Mensour, J. Milton, Phys. Rev. Lett. 76, 708 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    C. Masoller, Phys. Rev. Lett. 88, 034102 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    S. Yanchuk, P. Perlikowski, Phys. Rev. E 79, 046221 (2009)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    S.B. Power, R. Kleeman, Tellus A 46, 86 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    J. Borresen, S. Lynch, Int. J. Bifur. Chaos 12, 129 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Pisarchik, R. Jaimes-Reátegui, J. Garcia-López, Int. J. Bifur. Chaos 18, 1801 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Brzeski, P. Perlikowski, S. Yanchuk, T. Kapitaniak, J. Sound Vibr. 331, 5347 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    U. Feudel, C. Grebogi, L. Poon, J.A. Yorke, Chaos, Solitons Fractals 9, 171 (1998)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    B. Blazejczyk-Okolewska, T. Kapitaniak, Chaos, Solitons Fractals 9, 1439 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    C.R. Hens, R. Banerjee, U. Feudel, S.K. Dana, Phys. Rev. E 85, 039907 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J.C. Sprott, Chunbiao Li, Phys. Rev. E 89, 066901 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    C.R. Hens, R. Banerjee, U. Feudel, S.K. Dana, Phys. Rev. E 89, 066902 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Patel, U. Patel, A. Sen, G.C. Sethia, C. Hens, S.K. Dana, U. Feudel, K. Showalter, C.N. Ngonghala, R.E. Amritkar, Phys. Rev. E 89, 022918 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    S. Yanchuk, K.R. Schneider, L. Recke, Phys. Rev. E 69, 056221 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Rep. 541, 1 (2014)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P. Perlikowski, B. Jagiello, A. Stefanski, T. Kapitaniak, Phys. Rev. E 78, 017203 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Non-Linear Mechanics 45, 895 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Nature Comm. 5, 4079 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    O.V. Popovych, S. Yanchuk, P.A. Tass, Scientific Reports 3, 2926 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    T. Banerjee, D. Biswas, B.C. Sarkar, Nonlinear Dyn. 72, 321 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A.N. Pisarchik, R. Jaimes-Reátegui, J.H. García-López, Phys. Eng. Sci. 366, 459 (2008)CrossRefGoogle Scholar
  36. 36.
    F.R. Ruiz-Oliveras, A.N. Pisarchik, Phys. Rev. E 79, 016202 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    P. Kuzma, M. Kapitaniak, T. Kapitaniak, J. Theor. Appl. Mech. 52, 281 (2014)Google Scholar
  38. 38.
    V.N. Belykh, I.V. Belykh, E. Mosekilde, Phys. Rev. E 63, 036216 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    K. Kaneko, Phys. D: Nonlinear Phenom. 41, 137 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    S. Yanchuk, Y. Maistrenko, E. Mosekilde, Math. Comput. Simul. 54, 491 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Division of DynamicsLodz University of TechnologyLodzPoland
  2. 2.Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations