Skip to main content

Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity

Abstract

The natural habitat of many bacterial swimmers is dominated by interfaces and narrow interstitial spacings where they frequently interact with the fluid boundaries in their vicinity. To quantify these interactions, we investigated the swimming behavior of the soil bacterium Pseudomonas putida in a variety of confined environments. Using microfluidic techniques, we fabricated structured microchannels with different configurations of cylindrical obstacles. In these environments, we analyzed the swimming trajectories for different obstacle densities and arrangements. Although the overall swimming pattern remained similar to movement in the bulk fluid, we observed a change in the turning angle distribution that could be attributed to collisions with the cylindrical obstacles. Furthermore, a comparison of the mean run length of the bacteria to the mean free path of a billiard particle in the same geometry indicated that, inside a densely packed environment, the trajectories of the bacterial swimmers are efficiently guided along the open spacings.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. Bray, Cell Movement: From Molecules to Motility, 2nd edn. (Garland, New York, 2001)

  2. 2.

    J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 284, 1318 (1999)

    ADS  Article  Google Scholar 

  3. 3.

    S.M. Butler, A. Camilli, Nat. Rev. Microbiol. 3, 611 (2005)

    Article  Google Scholar 

  4. 4.

    H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)

    Article  Google Scholar 

  5. 5.

    E. Leifson, Atlas of Bacterial Flagellation (Academic Press, Waltham, Massachusetts, 1960)

  6. 6.

    L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793 (2000)

    Article  Google Scholar 

  7. 7.

    H.C. Berg, E. coli in Motion (Springer, New York, 2004)

  8. 8.

    H.C. Berg, D.A. Brown, Nature 239, 500 (1972)

    ADS  Article  Google Scholar 

  9. 9.

    J.E. Johansen, J. Pinhassi, N. Blackburn, U.L. Zweifel, Å. Hagström, Aquat. Microb. Ecol. 28, 229 (2002)

    Article  Google Scholar 

  10. 10.

    L. Xie, T. Altindal, S. Chattopadhyay, X.L. Wu, Proc. Natl. Acad. Sci. USA 108, 2246 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    J.P. Armitage, R.M. Macnab, J. Bacteriol. 169, 514 (1987)

    Google Scholar 

  12. 12.

    C.S. Harwood, K. Fosnaugh, M. Dispensa, J. Bacteriol. 171, 4063 (1989)

    Google Scholar 

  13. 13.

    K.J. Duffy, R.M. Ford, J. Bacteriol. 179, 1428 (1997)

    Google Scholar 

  14. 14.

    M.L. Davis, L.C. Mounteer, A.H. Zhou, J. Biosci. Bioeng. 111, 605 (2011)

    Article  Google Scholar 

  15. 15.

    M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Biophys. J. 105, 1915 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    C. Qian, C.C. Wong, S. Swarup, K. Chiam, Appl. Environ. Microbiol. 79, 4734 (2013)

    Article  Google Scholar 

  17. 17.

    M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Europhys. Lett. 109, 28007 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  19. 19.

    Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)

    Article  Google Scholar 

  20. 20.

    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  21. 21.

    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  22. 22.

    M. Espinosa-Urgel, J. Ramos, Appl. Environ. Microbiol. 70, 5190 (2004)

    Article  Google Scholar 

  23. 23.

    M. Espinosa-Urgel, R. Kolter, J. Ramos, Microbiology 148, 341 (2002)

    Google Scholar 

  24. 24.

    K.J. Duffy, P.T. Cummings, R.M. Ford, Biophys. J. 68, 800 (1995)

    ADS  Article  Google Scholar 

  25. 25.

    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H. A. Stone, Biophys. J. 90, 400 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    M. Ramia, D.L. Tullock, N. Phan-Thien, Biophys. J. 65, 755 (1993)

    ADS  Article  Google Scholar 

  27. 27.

    B.D. Kay, A.J. VandenBygaart, Soil Tillage Res. 66, 107 (2002)

    Article  Google Scholar 

  28. 28.

    J.W. Barton, R.M. Ford, Appl. Environ. Microbiol. 61, 3329 (1995)

    Google Scholar 

  29. 29.

    L.A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and Its Applications (Addison-Wesley Publishing Company, London, 1976)

  30. 30.

    N. Chernov, Hard Ball Systems and the Lorentz Gas, Vol. 101 of Encyclopaedia of Mathematical Sciences, Chap. Entropy Values and Entropy Bounds (Springer, Berlin, 2000), p. 122

  31. 31.

    N.C. Darnton, L. Turner, S. Rojevsky, H.C. Berg, J. Bacteriol. 189, 1756 (2007)

    Article  Google Scholar 

  32. 32.

    Y. Magariyama, M. Ichiba, K. Nakata, K. Baba, T. Ohtani, S. Kudo, T. Goto, Biophys. J. 88, 3648 (2005)

    Article  Google Scholar 

  33. 33.

    R.M. Macnab, Proc. Natl. Acad. Sci. USA 74, 221 (1977)

    ADS  Article  Google Scholar 

  34. 34.

    M. Kim, J.C. Bird, A.J. Van Parys, K.S. Breuer, T.R. Powers, Proc. Natl. Acad. Sci. USA 100, 15481 (2003)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Beta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raatz, M., Hintsche, M., Bahrs, M. et al. Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity. Eur. Phys. J. Spec. Top. 224, 1185–1198 (2015). https://doi.org/10.1140/epjst/e2015-02454-3

Download citation

Keywords

  • European Physical Journal Special Topic
  • Swimming Speed
  • Channel Height
  • Free Path Length
  • Obstacle Distance