Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 7, pp 1185–1198 | Cite as

Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity

  • M. Raatz
  • M. Hintsche
  • M. Bahrs
  • M. Theves
  • C. BetaEmail author
Regular Article
Part of the following topical collections:
  1. Statistical Physics of Self-Propelled Particles

Abstract

The natural habitat of many bacterial swimmers is dominated by interfaces and narrow interstitial spacings where they frequently interact with the fluid boundaries in their vicinity. To quantify these interactions, we investigated the swimming behavior of the soil bacterium Pseudomonas putida in a variety of confined environments. Using microfluidic techniques, we fabricated structured microchannels with different configurations of cylindrical obstacles. In these environments, we analyzed the swimming trajectories for different obstacle densities and arrangements. Although the overall swimming pattern remained similar to movement in the bulk fluid, we observed a change in the turning angle distribution that could be attributed to collisions with the cylindrical obstacles. Furthermore, a comparison of the mean run length of the bacteria to the mean free path of a billiard particle in the same geometry indicated that, inside a densely packed environment, the trajectories of the bacterial swimmers are efficiently guided along the open spacings.

Keywords

European Physical Journal Special Topic Swimming Speed Channel Height Free Path Length Obstacle Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bray, Cell Movement: From Molecules to Motility, 2nd edn. (Garland, New York, 2001)Google Scholar
  2. 2.
    J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 284, 1318 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Butler, A. Camilli, Nat. Rev. Microbiol. 3, 611 (2005)CrossRefGoogle Scholar
  4. 4.
    H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)CrossRefGoogle Scholar
  5. 5.
    E. Leifson, Atlas of Bacterial Flagellation (Academic Press, Waltham, Massachusetts, 1960)Google Scholar
  6. 6.
    L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793 (2000)CrossRefGoogle Scholar
  7. 7.
    H.C. Berg, E. coli in Motion (Springer, New York, 2004)Google Scholar
  8. 8.
    H.C. Berg, D.A. Brown, Nature 239, 500 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Johansen, J. Pinhassi, N. Blackburn, U.L. Zweifel, Å. Hagström, Aquat. Microb. Ecol. 28, 229 (2002)CrossRefGoogle Scholar
  10. 10.
    L. Xie, T. Altindal, S. Chattopadhyay, X.L. Wu, Proc. Natl. Acad. Sci. USA 108, 2246 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Armitage, R.M. Macnab, J. Bacteriol. 169, 514 (1987)Google Scholar
  12. 12.
    C.S. Harwood, K. Fosnaugh, M. Dispensa, J. Bacteriol. 171, 4063 (1989)Google Scholar
  13. 13.
    K.J. Duffy, R.M. Ford, J. Bacteriol. 179, 1428 (1997)Google Scholar
  14. 14.
    M.L. Davis, L.C. Mounteer, A.H. Zhou, J. Biosci. Bioeng. 111, 605 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Biophys. J. 105, 1915 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    C. Qian, C.C. Wong, S. Swarup, K. Chiam, Appl. Environ. Microbiol. 79, 4734 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Europhys. Lett. 109, 28007 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  19. 19.
    Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)CrossRefGoogle Scholar
  20. 20.
    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)CrossRefGoogle Scholar
  21. 21.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M. Espinosa-Urgel, J. Ramos, Appl. Environ. Microbiol. 70, 5190 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Espinosa-Urgel, R. Kolter, J. Ramos, Microbiology 148, 341 (2002)Google Scholar
  24. 24.
    K.J. Duffy, P.T. Cummings, R.M. Ford, Biophys. J. 68, 800 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H. A. Stone, Biophys. J. 90, 400 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ramia, D.L. Tullock, N. Phan-Thien, Biophys. J. 65, 755 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    B.D. Kay, A.J. VandenBygaart, Soil Tillage Res. 66, 107 (2002)CrossRefGoogle Scholar
  28. 28.
    J.W. Barton, R.M. Ford, Appl. Environ. Microbiol. 61, 3329 (1995)Google Scholar
  29. 29.
    L.A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and Its Applications (Addison-Wesley Publishing Company, London, 1976)Google Scholar
  30. 30.
    N. Chernov, Hard Ball Systems and the Lorentz Gas, Vol. 101 of Encyclopaedia of Mathematical Sciences, Chap. Entropy Values and Entropy Bounds (Springer, Berlin, 2000), p. 122Google Scholar
  31. 31.
    N.C. Darnton, L. Turner, S. Rojevsky, H.C. Berg, J. Bacteriol. 189, 1756 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Magariyama, M. Ichiba, K. Nakata, K. Baba, T. Ohtani, S. Kudo, T. Goto, Biophys. J. 88, 3648 (2005)CrossRefGoogle Scholar
  33. 33.
    R.M. Macnab, Proc. Natl. Acad. Sci. USA 74, 221 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    M. Kim, J.C. Bird, A.J. Van Parys, K.S. Breuer, T.R. Powers, Proc. Natl. Acad. Sci. USA 100, 15481 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Raatz
    • 1
  • M. Hintsche
    • 1
  • M. Bahrs
    • 1
  • M. Theves
    • 1
  • C. Beta
    • 1
    Email author
  1. 1.Institute of Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations