The European Physical Journal Special Topics

, Volume 224, Issue 6, pp 1021–1040

Critical elasticity at zero and finite temperature

Review
Part of the following topical collections:
  1. Quantum Phase Transitions in Correlated Electron Systems

Abstract

Elastic phase transitions of crystals and phase transitions whose order parameter couples linearly to elastic degrees of freedom are reviewed with particular focus on instabilities at zero temperature. A characteristic feature of these transitions is the suppression of critical fluctuations by long-range shear forces. As a consequence, at an elastic crystal symmetry-breaking quantum phase transition the phonon velocity vanishes only along certain crystallographic directions giving rise to critical phonon thermodynamics described by a stable Gaussian fixed point. At an isostructural solid-solid quantum critical end point, on the other hand, the complete suppression of critical fluctuations results in true mean-field critical behavior without a diverging correlation length. Whenever an order parameter couples bilinearly to the strain tensor, the critical properties are eventually governed by critical crystal elasticity. This is, for example, the case for quantum critical metamagnetism but also for the classical critical Mott end point at finite T. We discuss and compare the solid-solid end points expected close to the Mott transition in V2O3 and κ-(BEDT-TTF)2X.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Grüneisen, Annalen der Physik, 331 393 (1908)ADSCrossRefGoogle Scholar
  2. 2.
    In Ref. [1] Grüneisen introduced the parameter γ = −(V/T)(∂T/∂V)S = α/(C VκT) that describes the relative change of temperature upon adiabatically changing the volume, where C V = T(∂S/∂T)V and the isothermal compressibility κT = −(1/V)(∂V/∂p)T Google Scholar
  3. 3.
    L. Zhu, M. Garst, A. Rosch, Q. Si, Phys. Rev. Lett. 91, 066404 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M. Garst, A. Rosch, Phys. Rev. B 72, 205129 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    R. Küchler et al., Phys. Rev. Lett. 91, 66405 (2003)CrossRefGoogle Scholar
  6. 6.
    R. Küchler, et al., Phys. Rev. Lett. 93, 96402 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    R. Küchler, et al., Phys. Rev. Lett. 96, 256403 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    T. Lorenz, et al., J. Magn. Mag. Mat. 316, 291 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    B. Wolf, et al., PNAS 108, 6862 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Tokiwa, E.D. Bauer, P. Gegenwart, Phys. Rev. Lett. 109, 116402 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Tokiwa, E.D. Bauer, P. Gegenwart, Phys. Rev. Lett. 111 (2013)Google Scholar
  12. 12.
    Y. Tokiwa, M. Garst, P. Gegenwart, S.L. Budko, P.C. Canfield, Phys. Rev. Lett. 111, 116401 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Tokiwa, J.J. Ishikawa, S. Nakatsuji, P. Gegenwart, Nat. Mater. 13, 356 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    H. Ryll, et al., Phys. Rev. B 89, 144416 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    P. Gegenwart, Q. Si, F. Steglich, Nat. Phys. 4, 186 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Gegenwart et al., J. Low Temp. Phys. 161, 117 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    O.K. Rice, J. Chem. Phys. 22, 1535 (1954)ADSCrossRefGoogle Scholar
  19. 19.
    C. Domb, J. Chem. Phys. 25, 783 (1956)ADSCrossRefGoogle Scholar
  20. 20.
    A.P. Levanyuk, A.A. Sobyanin, JETP Lett. 11, 371 (1970)ADSGoogle Scholar
  21. 21.
    J. Villain, Solid State Comm. 8, 295 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    A.I. Larkin, S.A. Pikin, JETP 29, 891 (1969)ADSGoogle Scholar
  23. 23.
    J. Sak, Phys. Rev. B 10, 3957 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    F.J. Wegner, J. Phys. C.: Solid State Phys. 7, 2109 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Bergman, B.I. Halperin, Phys. Rev. B 13, 2145 (1976)ADSCrossRefGoogle Scholar
  26. 26.
    S. Aubry, R. Pick, J. Phys. (Paris) 32, 657 (1971)CrossRefGoogle Scholar
  27. 27.
    R.A. Cowley, Phys. Rev. B 13, 4877 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    R. Folk, H. Iro, F. Schwabl, Z. Phys. B 25, 69 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    R. Folk, H. Iro, F. Schwabl, Phys. Rev. B 20, 1229 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    F. Schwabl, “Modern Trends in the Theory of Condensed Matter” (Springer Berlin Heidelberg) 115, 432 (1980)ADSGoogle Scholar
  31. 31.
    F. Schwabl, U.C. Täuber, Phil. Trans. R. Soc. Lond. A 354, 2847 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    J.T. Chalker, Physics Letters A 80, 40 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    M. Zacharias, I. Paul, M. Garst (unpublished)Google Scholar
  34. 34.
    M. Zacharias, L. Bartosch, M. Garst, Phys. Rev. Lett. 109, 176401 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    M. Zacharias, Mott transition and quantum critical metamagnetism on compressible lattices, Ph.D. thesis, Universität zu Köln, 2013Google Scholar
  36. 36.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986)Google Scholar
  37. 37.
    M. Born, K. Huang, Dynamical theory of crystal lattices (Clarendon Press, 1962)Google Scholar
  38. 38.
    F. Anfuso, et al., Phys. Rev. B 77, 235113 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    M. Dzero, M.R. Norman, I. Paul, C. Pépin, J. Schmalian, Phys. Rev. Lett. 97, 185701 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    M. Dzero, M.R. Norman, I. Paul, C. Pépin, J. Schmalian, Phys. Rev. Lett. 104, 119901 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    A. Hackl, M. Vojta, Phys. Rev. B 77, 134439 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    A.J. Millis, A.J. Schofield, G.G. Lonzarich, S.A. Grigera, Phys. Rev. Lett. 88, 217204 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    M. Zacharias, M. Garst, Phys. Rev. B 87, 075119 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    E. Courtens, R. Gammon, S. Alexander, Phys. Rev. Lett. 43, 1026 (1979)ADSCrossRefGoogle Scholar
  45. 45.
    E.G. Poniatovskii, Sov. Phys. Dokl. 3, 498 [Dokl. Akad. Nauk. SSR 120, 1021 (1958)]Google Scholar
  46. 46.
    J.M. Lawrence, M.C. Croft, R.D. Parks, Phys. Rev. Lett. 35, 289 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    M.C. Croft, R.D. Parks, in Valence Instabilities and Related Narrow Band Phenomena, edited by R.D. Parks (Plenum, New York, 1977), p. 455Google Scholar
  48. 48.
    E.P. Wohlfarth, P. Rhodes, Philos. Mag. 7, 1817 (1962)ADSCrossRefGoogle Scholar
  49. 49.
    S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, A.P. Mackenzie, Science 294, 329 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    F. Weickert, M. Brando, F. Steglich, P. Gegenwart, M. Garst, Phys. Rev. B 81, 134438 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    P. Gegenwart, F. Weickert, M. Garst, R.S. Perry, Y. Maeno, Phys. Rev. Lett. 96, 136402 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    R.A. Cowley, Phys. Rev. Lett. 36, 744 (1976)ADSCrossRefGoogle Scholar
  53. 53.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    C. Castellani, C. Di Castro, D. Feinberg, J. Ranninger, Phys. Rev. Lett. 43, 1957 (1979)ADSCrossRefGoogle Scholar
  55. 55.
    G. Kotliar, E. Lange, M.J. Rozenberg, Phys. Rev. Lett. 84, 5180 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    A. Jayaraman, D.B. McWhan, J.P. Remeika, P.D. Dernier, Phys. Rev. B 2, 3751 (1970)ADSCrossRefGoogle Scholar
  57. 57.
    D. Fournier, M. Poirier, M. Castonguay, K.D. Truong, Phys. Rev. Lett. 90, 127002 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Metcalf, J.M. Honig, Science 302, 89 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    F. Kagawa, K. Miyagawa, K. Kanoda, Nature 436, 534 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    F. Kagawa, K. Miyagawa, K. Kanoda, Nature Phys. 5, 880 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué, P. Batail, Phys. Rev. Lett. 85, 5420 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    P. Limelette, P. Wzietek, S. Florens, A. Georges, T.A. Costi, C. Pasquier, D. Jérome, C. Mézière, P. Batail, Phys. Rev. Lett. 91, 016401 (2003) tADSCrossRefGoogle Scholar
  63. 63.
    N. Toyota, M. Lang, J. Müller, Low-dimensional molecular metals (Springer, Berlin, 2007)Google Scholar
  64. 64.
    S. Papanikolaou, R.M. Fernandes, E. Fradkin, P.W. Phillips, J. Schmalian, R. Sknepnek, Phys. Rev. Lett. 100, 026408 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    M. de Souza, A. Brühl, C. Strack, B. Wolf, D. Schweitzer, M. Lang, Phys. Rev. Lett. 99, 037003 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    L. Bartosch, M. de Souza, M. Lang, Phys. Rev. Lett. 104, 245701 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    M. Imada, Phys. Rev. B 72, 075113 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    M. Imada, T. Misawa, Y. Yamaji, J. Phys.: Cond. Mat. 22, 164206 (2010)ADSGoogle Scholar
  69. 69.
    M. Sentef, P. Werner, E. Gull, A.P. Kampf, Phys. Rev. B 84, 165133 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    P. Sémon, A.-M.S. Tremblay, Phys. Rev. B 85, 201101 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    L.D. Landau, E.M. Lifshitz, Stat. Phys. (Butterworth-Heinemann, 1975)Google Scholar
  72. 72.
    D. Nichols, R. Sladek, H. Harrison, Phys. Rev. B 24, 3025 (1981)ADSCrossRefGoogle Scholar
  73. 73.
    P. Fonseca, A. Zamolodchikov, J. Stat. Phys. 110, 527 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Universität zu KölnKölnGermany

Personalised recommendations