Abstract
Many features of a molecule which are of physical interest (e.g. molecular conformations, reaction rates) are described in terms of its dynamics in configuration space. This article deals with the projection of molecular dynamics in phase space onto configuration space. Specifically, we study the situation that the phase space dynamics is governed by a stochastic Langevin equation and study its relation with the configurational Smoluchowski equation in the three different scaling regimes: Firstly, the Smoluchowski equations in non-Cartesian geometries are derived from the overdamped limit of the Langevin equation. Secondly, transfer operator methods are used to describe the metastable behaviour of the system at hand, and an explicit small-time asymptotics is derived on which the Smoluchowski equation turns out to govern the dynamics of the position coordinate (without any assumptions on the damping). By using an adequate reduction technique, these considerations are then extended to one-dimensional reaction coordinates. Thirdly, we sketch three different approaches to approximate the metastable dynamics based on time-local information only.
Similar content being viewed by others
Change history
15 December 2017
We would like to add the following acknowledgement to our article published in Eur. Phys. J. Special Topics, September 2015, Volume 224, Issue 12, pp. 2463–2490.
References
R.B. Best, G. Hummer, Proc. Natl. Acad. Sci. USA 107(3), 1088 (2010)
A. Bittracher, P. Koltai, O. Junge, Pseudo generators of spatial transfer operators (preprint), (2014) [arXiv:1412.1733]
J.D. Chodera, W.C. Swope, J.W. Pitera, K.A. Dill, Multiscale Model. Simul. 5(4), 1214 (2006)
A.J. Chorin, O.H. Hald, R. Kupferman, Proc. Natl. Acad. Sci. 97(7), 2968 (2000)
A.J. Chorin, O.H. Hald, R. Kupferman, Phys. D: Nonlin. Phenom. 166(3), 239 (2002)
G. Ciccotti, T. Lelièvre, E. Vanden-Eijnden, Comm. Pure Appl. Math. 61(3), 371 (2008)
M. Dellnitz, A. Hohmann, Numerische Mathematik 75(3), 293 (1997)
M. Dellnitz, O. Junge, SIAM J. Num. Anal. 36(2) (1999)
P. Deuflhard, M. Dellnitz, O. Junge, C. Schütte, Computational molecular dynamics: challenges, methods, ideas (Springer, 1999), p. 98
P. Deuflhard, M. Weber, Linear Algebra Appl. 398, 161 (2004), Special Issue on Matrices and Mathematical Biology
A.R. Dinner, A. Ali, L.J. Smith, C.M. Dobson, M. Karplus, Trends Biochem. Sci. 25(7), 331 (2000)
W. E, E. Vanden-Eijnden, Multiscale modelling and simulation(Springer, 2004), p. 35
W. E, E. Vanden-Eijnden, J. Stat. Phys. 123(3), 503 (2006)
D.J. Evans, G.P. Morriss, Statistical mechanics of nonequilibrium liquids (Anu E Press, 2007)
H. Federer, Geometric measure theory, Vol. 1996 (Springer New York, 1969)
G. Froyland, O. Junge, P. Koltai, SIAM J. Numer. Anal. 51(1), 223 (2013)
C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, 2009)
D. Givon, R. Kupferman, O.H. Hald, Israel J. Math. 145, 221 (2004)
P. Hänggi, F. Marchesoni, Chaos 15(2), 026101 (2005)
P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)
C. Hartmann, Model Reduction in Classical Molecular Dynamics, Ph.D. thesis, Freie Universität Berlin , 2007
C. Hartmann, J. Stat. Phys. 130(4), 687 (2008)
C. Hartmann, T. Yanao, Mol. Phys. 111(22-23), 3534 (2013)
F. Hérault, F. Nier, Arch. Rational Mech. Anal. 171(2), 151 (2004)
W. Huisinga, B. Schmidt, Metastability and dominant eigenvalues of transfer operators, edited by B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel New Algorithms for Macromolecular Simulation, Vol. 49, Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2006), p. 167
I. Karatzas, Brownian motion and stochastic calculus, Vol. 113 (Springer, 1991)
H.A. Kramers, Physica 7(4), 284 (1940)
A. Lasota, M.C. Mackey, Chaos, fractals, and noise: stochastic aspects of dynamics, Vol. 97 (Springer, 1994)
F. Legoll, T. Lelièvre, Nonlinearity 23(9), 2131 (2010)
T. Lelièvre, M. Rousset, G. Stoltz, Free energy computations: a mathematical perspective (Imperial College Press, 2010)
J. Lu, E. Vanden-Eijnden, J. Chem. Phys. 141 (044109) (2014)
S. Maire, E. Tanré, Stochastic spectral formulations for elliptic problems, edited by P. L’ Ecuyer, A.B. Owen, Monte Carlo and Quasi-Monte Carlo Methods 2008 (Springer Berlin Heidelberg, 2009), p. 513
J.C. Mattingly, A.M. Stuart, Markov Process. Related Fields 8(2), 199 (2002)
J.C. Mattingly, A.M. Stuart, D.J. Higham, Stoch. Proc. Appl. 101(2), 185 (2002)
E. Nelson, Dynamical theories of Brownian motion, Vol. 17 (Princeton University Press Princeton, 1967)
B. Øksendal, Stochastic differential equations (Springer, 2003)
G. Papanicolaou, Rocky Mountain J. Math. 6(4), 653 (1976)
E. Pardoux, A.Y. Veretennikov, Ann. Probab. 33(3), 1111 (2005)
G. Pavliotis, A. Stuart, Multiscale methods: averaging and homogenization, Vol. 53 (Springer, 2008)
A. Pazy, Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, New York, 1983)
M.A. Peletier, G. Savarè, M. Veneroni, SIAM J. Math. Analysis 42(4), 1805 (2010)
C. Schütte, Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules, 1999, Habilitation Thesis
C. Schütte, M. Sarich, Metastability and Markov State Models in Molecular Dynamics, Courant Lecture Notes in Mathematics (2013)
C. Schütte, M. Sarich, Eur. Phys. J. Special Topics 224 (2015), this volume
J.L. Skinner, P.G. Wolynes, Physica A 96(3), 561 (1979)
M.V. Smoluchowski, Z. Physik 17, 557 (1916)
W.C. Swope, J.W. Pitera, F. Suits, J. Phys. Chem. B 108(21), 6571 (2004)
L.N. Trefethen, M. Embree, Spectra and pseudospectra: the behavior of nonnormal matrices and operators (Princeton University Press, 2005)
E. Vanden-Eijnden, Ann. Rev. Phys. Chem., 61, 391 (2010)
M. Weber, A subspace approach to molecular Markov state models via a new infinitesimal generator (2012) Habilitation thesis
E. Zeidler, Applied functional analysis, Vol. 108 (Springer, 1995)
R. Zwanzig, J. Stat. Phys. 9(3), 215 (1973)
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at https://doi.org/10.1140/epjst/e2017-70091-7.
Rights and permissions
About this article
Cite this article
Bittracher, A., Hartmann, C., Junge, O. et al. Pseudo generators for under-resolved molecular dynamics. Eur. Phys. J. Spec. Top. 224, 2463–2490 (2015). https://doi.org/10.1140/epjst/e2015-02422-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2015-02422-y