The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2331–2349 | Cite as

Open boundary molecular dynamics

Review A. Representation of Molecular Systems Across Scales
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system’s boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Khare, J.J. de Pablo, A. Yethiraj, Macromolecules 29, 7910 (1996)CrossRefADSGoogle Scholar
  2. 2.
    S. Bernardi, B.D. Todd, D.J. Searles, J. Chem. Phys. 132, 244706 (2010)CrossRefADSGoogle Scholar
  3. 3.
    E.G. Flekkoy, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. E 72, 026703 (2005)CrossRefADSGoogle Scholar
  4. 4.
    M. Tschopp, J.L. Bouvard, D. Ward, D. Bammann, M.F. Horstemeyer, [arXiv:1310.0728] (2013)
  5. 5.
    S. Yasuda, R. Yamamoto, Phys. Rev. X 4, 041011 (2014)Google Scholar
  6. 6.
    X. Nie, M.O. Robbins, S. Chen, Phys. Rev. Lett. 96, 134501 (2006)CrossRefADSGoogle Scholar
  7. 7.
    X. Zhang, D. Lohse, Biomicrofluidics 4, 041301 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Daivis, J. Non-Newtonian Fluid Mech. 152, 120 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    T. Harada, S. Sasa, Phys. Rev. Lett. 95, 130602 (2005)CrossRefADSGoogle Scholar
  10. 10.
    G.D. Fabritiis, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. Lett. 97, 134501 (2006)CrossRefADSGoogle Scholar
  11. 11.
    S.T. O’Connell, P.A. Thompson, Phys. Rev. E 52, R5792 (1995)CrossRefADSGoogle Scholar
  12. 12.
    N.G. Hadjiconstantinou, A.T. Patera, Int. J. Mod. Phys. C 08, 967 (1997)CrossRefADSGoogle Scholar
  13. 13.
    T. Werder, J.H. Walther, P. Koumoutsakos, J. Comput. Phys. 205, 373 (2005)MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    K.M. Mohamed, A.A. Mohamad, Microfluid Nanofluid 8, 283 (2010)CrossRefGoogle Scholar
  15. 15.
    E.G. Flekkoy, G. Wagner, J. Feder, Europhys. Lett. 52, 271 (2000)CrossRefADSGoogle Scholar
  16. 16.
    R. Delgado-Buscalioni, G. De Fabritiis, Phys. Rev. E 76, 036709 (2007)CrossRefADSGoogle Scholar
  17. 17.
    P.L. Lions, On the schwarz alternating method, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, edited by R. Glowinski (Society for Industrial and Applied Mathematics, 1998), p. 1Google Scholar
  18. 18.
    J.H. Walther, M. Praprotnik, E.M. Kotsalis, P. Koumoutsakos, J. Comput. Phys. 231, 2677 (2012)CrossRefADSMATHGoogle Scholar
  19. 19.
    R. Delgado-Buscalioni, Tools for multiscale simulation of liquids using open molecular dynamics, in Numerical Analysis of Multiscale Computations, edited by Y.-H. R. T. Björn Engquist, Olof Runborg (Springer, 2011)Google Scholar
  20. 20.
    M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)CrossRefADSGoogle Scholar
  21. 21.
    R. Potestio, et al., Phys. Rev. Lett. 110, 108301 (2013)CrossRefADSGoogle Scholar
  22. 22.
    R. Potestio, et al., Phys. Rev. Lett. 111, 060601 (2013)CrossRefADSGoogle Scholar
  23. 23.
    R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 128, 114110 (2008)CrossRefADSGoogle Scholar
  24. 24.
    R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 131, 244107 (2009)CrossRefADSGoogle Scholar
  25. 25.
    R. Delgado-Buscalioni, P.V. Coveney, J. Chem. Phys. 119, 978 (2003)CrossRefADSGoogle Scholar
  26. 26.
    G. De Fabritiis, R. Delgado-Buscalioni, P.V. Coveney, J. Chem. Phys. 121, 12139 (2004)CrossRefADSGoogle Scholar
  27. 27.
    M.K. Borg, D.A. Lockerby, J.M. Reese, J. Chem. Phys. 140 (2014)Google Scholar
  28. 28.
    P. Español, et al., J. Chem. Phys. 142, 064115 (2015)CrossRefADSGoogle Scholar
  29. 29.
    A. Agarwal, H. Wang, C. Schütte, L. Delle Site, J. Chem. Phys. 141 (2014)Google Scholar
  30. 30.
    N.D. Petsev, L.G. Leal, M.S. Shell, J. Chem. Phys. (2015)Google Scholar
  31. 31.
    S.C. Kamerlin, S. Vicatos, A. Dryga, A. Warshel, Annu. Rev. Phys. Chem. 62, 41 (2011)CrossRefADSGoogle Scholar
  32. 32.
    M. Praprotnik, L. Delle Site, K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008)CrossRefADSGoogle Scholar
  33. 33.
    T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, M. Karttunen, Phys. Chem. Chem. Phys. 11, 1869 (2009)CrossRefGoogle Scholar
  34. 34.
    C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)CrossRefADSGoogle Scholar
  35. 35.
    G.S. Ayton, W.G. Noid, G.A. Voth, Curr. Opin. Struct. Biol. 17, 192 (2007)CrossRefGoogle Scholar
  36. 36.
    A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2003)CrossRefGoogle Scholar
  37. 37.
    M. Neri, C. Anselmi, M. Cascella, A. Maritan, P. Carloni, Phys. Rev. Lett. 95, 218102 (2005)CrossRefADSGoogle Scholar
  38. 38.
    A.J. Rzepiela, M. Louhivuori, C. Peter, S.J. Marrink, Phys. Chem. Chem. Phys. 13, 10437 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Riniker, A.P. Eichenberger, W.F. van Gunsteren, J. Phys. Chem. B 116, 8873 (2012)CrossRefGoogle Scholar
  40. 40.
    W. Han, K. Schulten, J. Chem. Theory Comput. 8, 4413 (2012)CrossRefGoogle Scholar
  41. 41.
    P. Sokkar, S.M. Choi, Y.M. Rhee, J. Chem. Theory Comput. 9, 3728 (2013)CrossRefGoogle Scholar
  42. 42.
    T.A. Wassenaar, H.I. Inglfsson, M. Prie, S.J. Marrink, L.V. Schfer, J. Phys. Chem. B 117, 3516 (2013)CrossRefGoogle Scholar
  43. 43.
    P. Sokkar, S.M. Choi, Y.M. Rhee, J. Chem. Theory Comput. 9, 3728 (2013)CrossRefGoogle Scholar
  44. 44.
    H.C. Gonzalez, L. Darr, S. Pantano, J. Phys. Chem. B 117, 14438 (2013)CrossRefGoogle Scholar
  45. 45.
    C.F. Abrams, J. Chem. Phys. 123, 234101 (2005)CrossRefADSGoogle Scholar
  46. 46.
    S.O. Nielsen, P.B. Moore, B. Ensing, Phys. Rev. Lett. 105, 237802 (2010)CrossRefADSGoogle Scholar
  47. 47.
    A. Heyden, D.G. Truhlar, J. Chem. Theory Comput. 4, 217 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Artemova, S. Redon, Phys. Rev. Lett. 109, 190201 (2012)CrossRefADSGoogle Scholar
  49. 49.
    W.E.B. Enquist, X.T. Li, W.Q. Ren, E. Vanden-Eijden, CiCP 2, 367 (2007)Google Scholar
  50. 50.
    D.A. Fedosov, G.E. Karniadakis, J. Comput. Phys. 228, 1157 (2009)MathSciNetCrossRefADSMATHGoogle Scholar
  51. 51.
    W.G. Noid, J. Chem. Phys. 139 (2013)Google Scholar
  52. 52.
    H.I. Inglfsson, et al., WIREs Comput. Mol. Sci. 4, 225 (2014)CrossRefGoogle Scholar
  53. 53.
    M. Baaden, S.J. Marrink, Curr. Opin. Struct. Biol. 23, 878 (2013)CrossRefGoogle Scholar
  54. 54.
    X. Nie, S. Chen, M.O. Robbins, Phys. Fluids 16, 3579 (2004)CrossRefADSGoogle Scholar
  55. 55.
    C.P. Lowe, EPL (Europhysics Letters) 47, 145 (1999)CrossRefADSGoogle Scholar
  56. 56.
    C. Junghans, M. Praprotnik, K. Kremer, Soft Matter 4, 156 (2008)CrossRefADSGoogle Scholar
  57. 57.
    C. Hijon, P. Espanol, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010)CrossRefADSGoogle Scholar
  58. 58.
    A. Brünger, C.L. Brooks III, M. Karplus, Chem. Phys. Lett. 105, 495 (1984)CrossRefADSGoogle Scholar
  59. 59.
    A. Donev, J. Bell, A. Garcia, B. Alder, Multiscale Model. Simul. 8, 871 (2010)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    R. Delgado-Buscalioni, E.G. Flekkoy, P.V. Coveney, Europhys. Lett. 69, 959 (2005)CrossRefADSGoogle Scholar
  61. 61.
    D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)CrossRefGoogle Scholar
  62. 62.
    S. Bevc, C. Junghans, M. Praprotnik, J. Comput. Chem. 36, 467 (2015)CrossRefGoogle Scholar
  63. 63.
    G. Zhang, et al., ACS Macro Letters 3, 198 (2014)CrossRefGoogle Scholar
  64. 64.
    M. Christen, W.F. van Gunsteren, J. Chem. Phys. 124, 154106 (2006)CrossRefADSGoogle Scholar
  65. 65.
    B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993)CrossRefADSGoogle Scholar
  66. 66.
    R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003)CrossRefADSGoogle Scholar
  67. 67.
    M. Tuckerman, Statistical Mechanics and Molecular Simulations (Oxford Graduate Texts, Oxford University Press, UK, 2008)Google Scholar
  68. 68.
    G.S. Grest, K. Kremer, S.T. Milner, T.A. Witten, Macromolecules 22, 1904 (1989)CrossRefADSGoogle Scholar
  69. 69.
    G.S. Grest, K. Kremer, T.A. Witten, Macromolecules 20, 1376 (1987)CrossRefADSGoogle Scholar
  70. 70.
    J. Zavadlav, et al., J. Chem. Theory Comput. 10, 2591 (2014)CrossRefGoogle Scholar
  71. 71.
    J. Zavadlav, M.N. Melo, S.J. Marrink, M. Praprotnik, J. Chem. Phys. 140 (2014)Google Scholar
  72. 72.
    L. Delle Site, A. Agarwal, C. Junghans, H. Wang [arXiv:1412.4540] (2014)
  73. 73.
    M.K. Borg, D.A. Lockergy, J.M. Reese, J. Comp. Phys. 233, 400 (2013)CrossRefADSGoogle Scholar
  74. 74.
    X. Li, Int. J. Numer. Meth. Eng. 99, 157 (2014)CrossRefGoogle Scholar
  75. 75.
    R. Delgado-Buscalioni, A. Dejoan, Phys. Rev. E 78, 046708 (2008)CrossRefADSGoogle Scholar
  76. 76.
    P.J. Atzberger, P.R. Kramer, C.S. Peskin, J. Comput. Phys. 224, 1255 (2007)MathSciNetCrossRefADSMATHGoogle Scholar
  77. 77.
    J.B. Bell, A.L. Garcia, S.A. Williams, Phys. Rev. E 76, 016708 (2007)MathSciNetCrossRefADSGoogle Scholar
  78. 78.
    H. Wang, C. Hartmann, C. Schütte, L. Delle Site, Phys. Rev. X 3, 011018 (2013)Google Scholar
  79. 79.
    D. Mukherji, K. Kremer, Macromolecules 46, 9158 (2013)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • R. Delgado-Buscalioni
    • 1
  • J. Sablić
    • 2
  • M. Praprotnik
    • 2
  1. 1.Departamento Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  2. 2.Laboratory for Molecular ModelingNational Institute of ChemistryLjubljanaSlovenia

Personalised recommendations