Skip to main content
Log in

Open boundary molecular dynamics

  • Review
  • A. Representation of Molecular Systems Across Scales
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system’s boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Khare, J.J. de Pablo, A. Yethiraj, Macromolecules 29, 7910 (1996)

    Article  ADS  Google Scholar 

  2. S. Bernardi, B.D. Todd, D.J. Searles, J. Chem. Phys. 132, 244706 (2010)

    Article  ADS  Google Scholar 

  3. E.G. Flekkoy, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. E 72, 026703 (2005)

    Article  ADS  Google Scholar 

  4. M. Tschopp, J.L. Bouvard, D. Ward, D. Bammann, M.F. Horstemeyer, [arXiv:1310.0728] (2013)

  5. S. Yasuda, R. Yamamoto, Phys. Rev. X 4, 041011 (2014)

    Google Scholar 

  6. X. Nie, M.O. Robbins, S. Chen, Phys. Rev. Lett. 96, 134501 (2006)

    Article  ADS  Google Scholar 

  7. X. Zhang, D. Lohse, Biomicrofluidics 4, 041301 (2014)

    Article  Google Scholar 

  8. P. Daivis, J. Non-Newtonian Fluid Mech. 152, 120 (2008)

    Article  MATH  Google Scholar 

  9. T. Harada, S. Sasa, Phys. Rev. Lett. 95, 130602 (2005)

    Article  ADS  Google Scholar 

  10. G.D. Fabritiis, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. Lett. 97, 134501 (2006)

    Article  ADS  Google Scholar 

  11. S.T. O’Connell, P.A. Thompson, Phys. Rev. E 52, R5792 (1995)

    Article  ADS  Google Scholar 

  12. N.G. Hadjiconstantinou, A.T. Patera, Int. J. Mod. Phys. C 08, 967 (1997)

    Article  ADS  Google Scholar 

  13. T. Werder, J.H. Walther, P. Koumoutsakos, J. Comput. Phys. 205, 373 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. K.M. Mohamed, A.A. Mohamad, Microfluid Nanofluid 8, 283 (2010)

    Article  Google Scholar 

  15. E.G. Flekkoy, G. Wagner, J. Feder, Europhys. Lett. 52, 271 (2000)

    Article  ADS  Google Scholar 

  16. R. Delgado-Buscalioni, G. De Fabritiis, Phys. Rev. E 76, 036709 (2007)

    Article  ADS  Google Scholar 

  17. P.L. Lions, On the schwarz alternating method, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, edited by R. Glowinski (Society for Industrial and Applied Mathematics, 1998), p. 1

  18. J.H. Walther, M. Praprotnik, E.M. Kotsalis, P. Koumoutsakos, J. Comput. Phys. 231, 2677 (2012)

    Article  ADS  MATH  Google Scholar 

  19. R. Delgado-Buscalioni, Tools for multiscale simulation of liquids using open molecular dynamics, in Numerical Analysis of Multiscale Computations, edited by Y.-H. R. T. Björn Engquist, Olof Runborg (Springer, 2011)

  20. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)

    Article  ADS  Google Scholar 

  21. R. Potestio, et al., Phys. Rev. Lett. 110, 108301 (2013)

    Article  ADS  Google Scholar 

  22. R. Potestio, et al., Phys. Rev. Lett. 111, 060601 (2013)

    Article  ADS  Google Scholar 

  23. R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 128, 114110 (2008)

    Article  ADS  Google Scholar 

  24. R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 131, 244107 (2009)

    Article  ADS  Google Scholar 

  25. R. Delgado-Buscalioni, P.V. Coveney, J. Chem. Phys. 119, 978 (2003)

    Article  ADS  Google Scholar 

  26. G. De Fabritiis, R. Delgado-Buscalioni, P.V. Coveney, J. Chem. Phys. 121, 12139 (2004)

    Article  ADS  Google Scholar 

  27. M.K. Borg, D.A. Lockerby, J.M. Reese, J. Chem. Phys. 140 (2014)

  28. P. Español, et al., J. Chem. Phys. 142, 064115 (2015)

    Article  ADS  Google Scholar 

  29. A. Agarwal, H. Wang, C. Schütte, L. Delle Site, J. Chem. Phys. 141 (2014)

  30. N.D. Petsev, L.G. Leal, M.S. Shell, J. Chem. Phys. (2015)

  31. S.C. Kamerlin, S. Vicatos, A. Dryga, A. Warshel, Annu. Rev. Phys. Chem. 62, 41 (2011)

    Article  ADS  Google Scholar 

  32. M. Praprotnik, L. Delle Site, K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008)

    Article  ADS  Google Scholar 

  33. T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, M. Karttunen, Phys. Chem. Chem. Phys. 11, 1869 (2009)

    Article  Google Scholar 

  34. C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)

    Article  ADS  Google Scholar 

  35. G.S. Ayton, W.G. Noid, G.A. Voth, Curr. Opin. Struct. Biol. 17, 192 (2007)

    Article  Google Scholar 

  36. A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2003)

    Article  Google Scholar 

  37. M. Neri, C. Anselmi, M. Cascella, A. Maritan, P. Carloni, Phys. Rev. Lett. 95, 218102 (2005)

    Article  ADS  Google Scholar 

  38. A.J. Rzepiela, M. Louhivuori, C. Peter, S.J. Marrink, Phys. Chem. Chem. Phys. 13, 10437 (2011)

    Article  Google Scholar 

  39. S. Riniker, A.P. Eichenberger, W.F. van Gunsteren, J. Phys. Chem. B 116, 8873 (2012)

    Article  Google Scholar 

  40. W. Han, K. Schulten, J. Chem. Theory Comput. 8, 4413 (2012)

    Article  Google Scholar 

  41. P. Sokkar, S.M. Choi, Y.M. Rhee, J. Chem. Theory Comput. 9, 3728 (2013)

    Article  Google Scholar 

  42. T.A. Wassenaar, H.I. Inglfsson, M. Prie, S.J. Marrink, L.V. Schfer, J. Phys. Chem. B 117, 3516 (2013)

    Article  Google Scholar 

  43. P. Sokkar, S.M. Choi, Y.M. Rhee, J. Chem. Theory Comput. 9, 3728 (2013)

    Article  Google Scholar 

  44. H.C. Gonzalez, L. Darr, S. Pantano, J. Phys. Chem. B 117, 14438 (2013)

    Article  Google Scholar 

  45. C.F. Abrams, J. Chem. Phys. 123, 234101 (2005)

    Article  ADS  Google Scholar 

  46. S.O. Nielsen, P.B. Moore, B. Ensing, Phys. Rev. Lett. 105, 237802 (2010)

    Article  ADS  Google Scholar 

  47. A. Heyden, D.G. Truhlar, J. Chem. Theory Comput. 4, 217 (2008)

    Article  Google Scholar 

  48. S. Artemova, S. Redon, Phys. Rev. Lett. 109, 190201 (2012)

    Article  ADS  Google Scholar 

  49. W.E.B. Enquist, X.T. Li, W.Q. Ren, E. Vanden-Eijden, CiCP 2, 367 (2007)

    Google Scholar 

  50. D.A. Fedosov, G.E. Karniadakis, J. Comput. Phys. 228, 1157 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. W.G. Noid, J. Chem. Phys. 139 (2013)

  52. H.I. Inglfsson, et al., WIREs Comput. Mol. Sci. 4, 225 (2014)

    Article  Google Scholar 

  53. M. Baaden, S.J. Marrink, Curr. Opin. Struct. Biol. 23, 878 (2013)

    Article  Google Scholar 

  54. X. Nie, S. Chen, M.O. Robbins, Phys. Fluids 16, 3579 (2004)

    Article  ADS  Google Scholar 

  55. C.P. Lowe, EPL (Europhysics Letters) 47, 145 (1999)

    Article  ADS  Google Scholar 

  56. C. Junghans, M. Praprotnik, K. Kremer, Soft Matter 4, 156 (2008)

    Article  ADS  Google Scholar 

  57. C. Hijon, P. Espanol, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010)

    Article  ADS  Google Scholar 

  58. A. Brünger, C.L. Brooks III, M. Karplus, Chem. Phys. Lett. 105, 495 (1984)

    Article  ADS  Google Scholar 

  59. A. Donev, J. Bell, A. Garcia, B. Alder, Multiscale Model. Simul. 8, 871 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Delgado-Buscalioni, E.G. Flekkoy, P.V. Coveney, Europhys. Lett. 69, 959 (2005)

    Article  ADS  Google Scholar 

  61. D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)

    Article  Google Scholar 

  62. S. Bevc, C. Junghans, M. Praprotnik, J. Comput. Chem. 36, 467 (2015)

    Article  Google Scholar 

  63. G. Zhang, et al., ACS Macro Letters 3, 198 (2014)

    Article  Google Scholar 

  64. M. Christen, W.F. van Gunsteren, J. Chem. Phys. 124, 154106 (2006)

    Article  ADS  Google Scholar 

  65. B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993)

    Article  ADS  Google Scholar 

  66. R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003)

    Article  ADS  Google Scholar 

  67. M. Tuckerman, Statistical Mechanics and Molecular Simulations (Oxford Graduate Texts, Oxford University Press, UK, 2008)

  68. G.S. Grest, K. Kremer, S.T. Milner, T.A. Witten, Macromolecules 22, 1904 (1989)

    Article  ADS  Google Scholar 

  69. G.S. Grest, K. Kremer, T.A. Witten, Macromolecules 20, 1376 (1987)

    Article  ADS  Google Scholar 

  70. J. Zavadlav, et al., J. Chem. Theory Comput. 10, 2591 (2014)

    Article  Google Scholar 

  71. J. Zavadlav, M.N. Melo, S.J. Marrink, M. Praprotnik, J. Chem. Phys. 140 (2014)

  72. L. Delle Site, A. Agarwal, C. Junghans, H. Wang [arXiv:1412.4540] (2014)

  73. M.K. Borg, D.A. Lockergy, J.M. Reese, J. Comp. Phys. 233, 400 (2013)

    Article  ADS  Google Scholar 

  74. X. Li, Int. J. Numer. Meth. Eng. 99, 157 (2014)

    Article  Google Scholar 

  75. R. Delgado-Buscalioni, A. Dejoan, Phys. Rev. E 78, 046708 (2008)

    Article  ADS  Google Scholar 

  76. P.J. Atzberger, P.R. Kramer, C.S. Peskin, J. Comput. Phys. 224, 1255 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. J.B. Bell, A.L. Garcia, S.A. Williams, Phys. Rev. E 76, 016708 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  78. H. Wang, C. Hartmann, C. Schütte, L. Delle Site, Phys. Rev. X 3, 011018 (2013)

    Google Scholar 

  79. D. Mukherji, K. Kremer, Macromolecules 46, 9158 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Delgado-Buscalioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Buscalioni, R., Sablić, J. & Praprotnik, M. Open boundary molecular dynamics. Eur. Phys. J. Spec. Top. 224, 2331–2349 (2015). https://doi.org/10.1140/epjst/e2015-02415-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02415-x

Keywords

Navigation