Skip to main content

A generalized-Yvon-Born-Green method for coarse-grained modeling

Advances, Challenges, and Insight

Abstract

The Yvon-Born-Green (YBG) integral equation is a basic result of liquid state theory that relates the pair potential of a simple fluid to the resulting equilibrium two- and three-body correlation functions. Quite recently, we derived a more general form that can be applied to complex molecular systems. This generalized-YBG (g-YBG) theory provides not only an exact relation between a given potential and the resulting equilibrium correlation functions, but also a remarkably powerful framework for directly solving the statistical mechanics inverse problem of determining potentials from equilibrium structure ensembles. In the context of coarse-grained (CG) modeling, the g-YBG theory determines a variationally optimal approximation to the many-body potential of mean force directly (i.e., noniteratively) from structural correlation functions and, in particular, allows “force-matching” without forces. While our initial efforts numerically validated the g-YBG theory with relatively simple systems, our more recent efforts have considered increasingly complex systems, such as peptides and polymers. This minireview summarizes this progress and the resulting insight, as well as discusses the outstanding challenges and future directions for the g-YBG theory.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C.N. Likos, Phys. Rep. 348, 267 (2001)

    ADS  Article  Google Scholar 

  2. 2.

    J.P. Hansen, C.I. Addison, A.A. Louis, J. Phys.: Condens. Matter 17, S3185 (2005)

    ADS  Google Scholar 

  3. 3.

    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, San Diego, CA USA, 1990)

  4. 4.

    R. Evans, Adv. Phys. 28, 143 (1979)

    ADS  Article  Google Scholar 

  5. 5.

    H.C. Andersen, D. Chandler, J. Chem. Phys. 57, 1918 (1972)

    ADS  Article  Google Scholar 

  6. 6.

    H.C. Andersen, D. Chandler, J. Chem. Phys. 57, 1930 (1972)

    ADS  Article  Google Scholar 

  7. 7.

    K.S. Schweizer, J.G. Curro, Phys. Rev. Lett. 58, 246 (1987)

    ADS  Article  Google Scholar 

  8. 8.

    K.S. Schweizer, J.G. Curro, Adv. Chem. Phys. 93, 1 (1997)

    Google Scholar 

  9. 9.

    M.G. Guenza, J. Phys.: Condens. Matter 20, 033101 (2008)

    ADS  Google Scholar 

  10. 10.

    J. McCarty, I.Y. Lyubimov, M.G. Guenza, J. Phys. Chem. B 113, 11876 (2009)

    Article  Google Scholar 

  11. 11.

    T.L. Hill, Statistical Mechanics: Principles and Selected Applications (Dover reprint, 1987)

  12. 12.

    D. Henderson (ed.), Fundamentals of Inhomogeneous Fluids (Marcel Dekker, Inc., 1992)

  13. 13.

    K.E. Gubbins, Chem. Phys. Lett. 76, 329 (1980)

    MathSciNet  ADS  Article  Google Scholar 

  14. 14.

    S.G. Whittington, L.G. Dunfield, J. Phys. A: Math., Nucl., Gen. 6, 484 (1973)

    ADS  Article  Google Scholar 

  15. 15.

    M.P. Taylor, J.E.G. Lipson, J. Chem. Phys. 100, 518 (1993)

    ADS  Article  Google Scholar 

  16. 16.

    M.P. Taylor, J.E.G. Lipson, J. Chem. Phys. 102, 2118 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    P. Attard, J. Chem. Phys. 102, 5411 (1995)

    ADS  Article  Google Scholar 

  18. 18.

    J.W. Mullinax, W.G. Noid, Phys. Rev. Lett. 103, 198104 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    J.W. Mullinax, W.G. Noid, J. Phys. Chem. C 114, 5661 (2010)

    Article  Google Scholar 

  20. 20.

    J.W. Mullinax, W.G. Noid, J. Chem. Phys. 133, 124107 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    J.W. Mullinax, W.G. Noid, Proc. Natl. Acad. Sci. USA 107, 19867 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    C.R. Ellis, J.F. Rudzinski, W.G. Noid, Macromol. Theory Sim. 20, 478 (2011)

    Article  Google Scholar 

  23. 23.

    J.F. Rudzinski, W.G. Noid, J. Chem. Phys. 135, 214101 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 116, 8621 (2012)

    Article  Google Scholar 

  25. 25.

    W.G. Noid, Methods Mol. Biol. 924, 487 (2013)

    Article  Google Scholar 

  26. 26.

    J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 118, 8295 (2014)

    Article  Google Scholar 

  27. 27.

    T.L. Hill, An Introduction to Statistical Thermodynamics (Addison Wesley Publishing Company, 1997)

  28. 28.

    W.G. Noid, J.W. Chu, G.S. Ayton, G.A. Voth, J. Phys. Chem. B 111, 4116 (2007)

    Article  Google Scholar 

  29. 29.

    W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    W.G. Noid, P. Liu, Y.T. Wang, J.W. Chu, G.S. Ayton, S. Izvekov, H.C. Andersen, G.A. Voth, J. Chem. Phys. 128, 244115 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)

    Google Scholar 

  32. 32.

    M. Mechelke, M. Habeck, J. Chem. Theor. Comp. 9(12), 5685 (2013)

    Article  Google Scholar 

  33. 33.

    H.H. Rugh, Phys. Rev. Lett. 78, 772 (1997)

    ADS  Article  Google Scholar 

  34. 34.

    O.G. Jepps, G. Ayton, D.J. Evans, Phys. Rev. E 62, 4757 (2000)

    ADS  Article  Google Scholar 

  35. 35.

    W.G. Noid, J. Chem. Phys. 139(9), 090901 (2013)

    ADS  Article  Google Scholar 

  36. 36.

    S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)

    Article  Google Scholar 

  37. 37.

    S. Izvekov, G.A. Voth, J. Chem. Phys. 123, 134105 (2005)

    ADS  Article  Google Scholar 

  38. 38.

    F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)

    ADS  Article  Google Scholar 

  39. 39.

    J.G. Kirkwood, J. Chem. Phys. 3(5), 300 (1935)

    ADS  Article  MATH  Google Scholar 

  40. 40.

    A. Liwo, S. Oldziej, M.R. Pincus, R.J. Wawak, S. Rackovsky, H.A. Scheraga, J. Comp. Chem. 18, 849 (1997)

    Article  Google Scholar 

  41. 41.

    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, 2007)

  42. 42.

    A.J. Chorin, O.H. Hald, R. Kupferman, Proc. Natl. Acad. Sci. USA 97, 2968 (2000)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  43. 43.

    A.J. Chorin, Multiscale Model. Simul. 1, 105 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    A.J. Chorin, O.H. Hald, Stochastic Tools in Mathematics and Science (Springer, New York, NY USA, 2006)

  45. 45.

    W. Tschop, K. Kremer, J. Batoulis, T. Burger, O. Hahn, Acta Poly. 49, 61 (1998)

    Article  Google Scholar 

  46. 46.

    F. Müller-Plathe, Chem. Phys. Chem. 3, 754 (2002)

    Google Scholar 

  47. 47.

    M.S. Shell, J. Chem. Phys. 129, 144108 (2008)

    ADS  Article  Google Scholar 

  48. 48.

    A. Chaimovich, M.S. Shell, Phys. Rev. E 81 (2010)

  49. 49.

    A. Chaimovich, M.S. Shell, J. Chem. Phys. 134, 094112 (2011)

    ADS  Article  Google Scholar 

  50. 50.

    S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79 (1951)

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 52, 3730 (1995)

    ADS  Article  Google Scholar 

  52. 52.

    T. Murtola, M. Karttunen, I. Vattulainen, J. Chem. Phys. 131, 055101 (2009)

    ADS  Article  Google Scholar 

  53. 53.

    A. Lyubartsev, A. Mirzoev, L.J. Chen, A. Laaksonen, Faraday Disc. 144, 43 (2010)

    ADS  Article  Google Scholar 

  54. 54.

    A. Savelyev, G.A. Papoian, J. Phys. Chem. B 113, 7785 (2009)

    Article  Google Scholar 

  55. 55.

    A. Savelyev, G.A. Papoian, Biophys. J. 96, 4044 (2009)

    ADS  Article  Google Scholar 

  56. 56.

    J.D. Honeycutt, D. Thirumalai, Proc. Natl. Acad. Sci. USA 87, 3526 (1990)

    ADS  Article  Google Scholar 

  57. 57.

    J.D. Honeycutt, D. Thirumalai, Biopolymers 32, 695 (1992)

    Article  Google Scholar 

  58. 58.

    J.W. Mullinax, W.G. Noid, J. Chem. Phys. 131, 104110 (2009)

    ADS  Article  Google Scholar 

  59. 59.

    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  60. 60.

    K. Lu, J.F. Rudzinski, W.G. Noid, S.T. Milner, J.K. Maranas, Soft Matter 10, 978 (2014)

    ADS  Article  Google Scholar 

  61. 61.

    S. Dou, S. Zhang, R.J. Klein, J. Runt, R.H. Colby, Chem. Mater. 18(18), 4288 (2006)

    Article  Google Scholar 

  62. 62.

    K.J. Lin, J.K. Maranas, Macromolecules 45, 6230 (2012)

    ADS  Article  Google Scholar 

  63. 63.

    L.Y. Lu, S. Izvekov, A. Das, H.C. Andersen, G.A. Voth, J. Chem. Theor. Comp. 6(3), 954 (2010)

    Article  Google Scholar 

  64. 64.

    V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theor. Comp. 5(12), 3211 (2009)

    Article  Google Scholar 

  65. 65.

    A. Das, L. Lu, H.C. Andersen, G.A. Voth, J. Chem. Phys. 136, 194115 (2012)

    ADS  Article  Google Scholar 

  66. 66.

    V.A. Harmandaris, D. Reith, N.F.A. Van der Vegt, K. Kremer, Macromol. Chem. Phys. 208, 2109 (2007)

    Article  Google Scholar 

  67. 67.

    H.M. Cho, J.W. Chu, J. Chem. Phys. 131, 134107 (2009)

    ADS  Article  Google Scholar 

  68. 68.

    L. Lu, J.F. Dama, G.A. Voth, J. Chem. Phys. 139, 121906 (2013)

    ADS  Article  Google Scholar 

  69. 69.

    J.F. Rudzinski, W.G. Noid, J. Chem. Theor. Comp. 11, 1278 (2015)

    Article  Google Scholar 

  70. 70.

    S. Jain, S. Garde, S.K. Kumar, Ind. Eng. Chem. Res. 45, 5614 (2006)

    Article  Google Scholar 

  71. 71.

    G. Megariotis, A. Vyrkou, A. Leygue, D.N. Theodorou, Ind. Eng. Chem. Res. 50, 546 (2011)

    Article  Google Scholar 

  72. 72.

    S.P. Carmichael, M.S. Shell, J. Phys. Chem. B 116, 8383 (2012)

    Article  Google Scholar 

  73. 73.

    A. Naômé, A. Laaksonen, D.P. Vercauteren, J. Chem. Theor. Comp. 10(8), 3541 (2014)

    Article  Google Scholar 

  74. 74.

    A. Das, H.C. Andersen, J. Chem. Phys. 131, 034102 (2009)

    ADS  Article  Google Scholar 

  75. 75.

    A. Das, H.C. Andersen, J. Chem. Phys. 136, 194114 (2012)

    ADS  Article  Google Scholar 

  76. 76.

    A. Das, H.C. Andersen, J. Chem. Phys. 136, 194113 (2012)

    ADS  Article  Google Scholar 

  77. 77.

    M. Enciso, C. Schutte, L. Delle Site, Soft Matter 9, 6118 (2013)

    ADS  Article  Google Scholar 

  78. 78.

    J. McCarty, A.J. Clark, J. Copperman, M.G. Guenza, J. Chem. Phys. 140, 204913 (2014)

    ADS  Article  Google Scholar 

  79. 79.

    B. Mukherjee, L. Delle Site, K. Kremer, C. Peter, J. Phys. Chem. B 116(29), 8474 (2012)

    Article  Google Scholar 

  80. 80.

    I. Vorobyov, L. Li, T.W. Allen, J. Phys. Chem. B 112, 9588 (2008)

    Article  Google Scholar 

  81. 81.

    W.D. Bennett, D.P. Tieleman, J. Chem. Theor. Comp. 7, 2981 (2011)

    Article  Google Scholar 

  82. 82.

    S.Y. Mashayak, N.R. Aluru, J. Chem. Theor. Comp. 8(5), 1828 (2012)

    Article  Google Scholar 

  83. 83.

    M. Jochum, D. Andrienko, K. Kremer, C. Peter, J. Chem. Phys. 137, 064102 (2012)

    ADS  Article  Google Scholar 

  84. 84.

    T. Vettorel, H. Meyer, J. Chem. Theor. Comp. 2, 616 (2006)

    Article  Google Scholar 

  85. 85.

    J. Ghosh, R. Faller, Mol. Sim. 33, 759 (2007)

    Article  Google Scholar 

  86. 86.

    M.E. Johnson, T. Head-Gordon, A.A. Louis, J. Chem. Phys. 126, 144509 (2007)

    ADS  Article  Google Scholar 

  87. 87.

    A. Liwo, M. Khalili, C. Czaplewski, S. Kalinowski, S. Ołdziej, K. Wachucik, H.A. Scheraga, J. Phys. Chem. B 111, 260 (2007)

    Article  Google Scholar 

  88. 88.

    H.J. Qian, P. Carbone, X. Chen, H.A. Karimi-Varzaneh, C.C. Liew, F. Müller-Plathe, Macromolecules 41, 9919 (2008)

    ADS  Article  Google Scholar 

  89. 89.

    E. Sobolewski, M. Makowski, S. Oldziej, C. Czaplewski, A. Liwo, H.A. Scheraga, Protein Eng. Des. Sel. 22, 547 (2009)

    Article  Google Scholar 

  90. 90.

    K. Farah, A.C. Fogarty, M.C. Böhm, F. Müller-Plathe, Phys. Chem. Chem. Phys. 13, 2894 (2011)

    Article  Google Scholar 

  91. 91.

    L. Lu, G.A. Voth, J. Chem. Phys. 134, 224107 (2011)

    ADS  Article  Google Scholar 

  92. 92.

    S. Izvekov, J. Chem. Phys. 134, 034104 (2011)

    ADS  Article  Google Scholar 

  93. 93.

    O. Engin, A. Villa, C. Peter, M. Sayar, Macromol. Theory Sim. 20, 451 (2011)

    Article  Google Scholar 

  94. 94.

    E. Brini, V. Marcon, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 13, 10468 (2011)

    Article  Google Scholar 

  95. 95.

    E. Brini, N.F.A. van der Vegt, J. Chem. Phys. 137, 154113 (2012)

    ADS  Article  Google Scholar 

  96. 96.

    E. Brini, C.R. Herbers, G. Deichmann, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 14, 11896 (2012)

    Article  Google Scholar 

  97. 97.

    T.C. Moore, C.R. Iacovella, C. McCabe, J. Chem. Phys. 140(22), 224104 (2014)

    ADS  Article  Google Scholar 

  98. 98.

    V. Krishna, W.G. Noid, G.A. Voth, J. Chem. Phys. 131, 024103 (2009)

    ADS  Article  Google Scholar 

  99. 99.

    A.A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002)

    ADS  Google Scholar 

  100. 100.

    G. D’Adamo, A. Pelissetto, C. Pierleoni, J. Chem. Phys. 138, 234107 (2013)

    ADS  Article  Google Scholar 

  101. 101.

    T. Murtola, E. Falck, M. Karttunen, I. Vattulainen, J. Chem. Phys. 126, 075101 (2007)

    ADS  Article  Google Scholar 

  102. 102.

    C.C. Fu, P.M. Kulkarni, M.S. Shell, L.G. Leal, J. Chem. Phys. 137, 164106 (2012)

    ADS  Article  Google Scholar 

  103. 103.

    A. Das, H.C. Andersen, J. Chem. Phys. 132, 164106 (2010)

    ADS  Article  Google Scholar 

  104. 104.

    R. Evans, Mol. Sim. 4, 409 (1990)

    Article  Google Scholar 

  105. 105.

    A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 55, 5689 (1997)

    ADS  Article  Google Scholar 

  106. 106.

    T.R. Lezon, I. Bahar, PLoS Comput. Biol. 6, e1000816 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  107. 107.

    A. Savelyev, G.A. Papoian, Proc. Natl. Acad. Sci. USA 107, 20340 (2010)

    ADS  Article  Google Scholar 

  108. 108.

    L. Larini, L.Y. Lu, G.A. Voth, J. Chem. Phys. 132, 164107 (2010)

    ADS  Article  Google Scholar 

  109. 109.

    J. Lu, Y. Qiu, R. Baron, V. Molinero, J. Chem. Theor. Comp. 10, 4104 (2014)

    Article  Google Scholar 

  110. 110.

    G. van Anders, D. Klotsa, N.K. Ahmed, M. Engel, S.C. Glotzer, Proc. Natl. Acad. Sci. USA 111, E4812 (2014)

    ADS  Article  Google Scholar 

  111. 111.

    A. Morriss-Andrews, J. Rottler, S.S. Plotkin, J. Chem. Phys. 132, 035105 (2010)

    ADS  Article  Google Scholar 

  112. 112.

    J. Zhou, I.F. Thorpe, S. Izvekov, G.A. Voth, Biophys. J. 92, 4289 (2007)

    ADS  Article  Google Scholar 

  113. 113.

    W. Schommers, Phys. Rev. A 28, 3599 (1983)

    ADS  Article  Google Scholar 

  114. 114.

    L. Reatto, D. Levesque, J.J. Weis, Phys. Rev. A 33, 3451 (1986)

    ADS  Article  Google Scholar 

  115. 115.

    R.L. McGreevy, L. Pusztai, Mol. Sim. 1, 359 (1988)

    Article  Google Scholar 

  116. 116.

    D.A. Keen, R.L. McGreevy, Nature 344, 423 (1990)

    ADS  Article  Google Scholar 

  117. 117.

    A.K. Soper, Chem. Phys. 202, 295 (1996)

    ADS  Article  Google Scholar 

  118. 118.

    M.C. Rechtsman, F.H. Stillinger, S. Torquato, Phys. Rev. Lett. 95, 228301 (2005)

    ADS  Article  Google Scholar 

  119. 119.

    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)

    Article  Google Scholar 

  120. 120.

    S. Sacanna, D.J. Pine, G.R. Yi, Soft Matter 9, 8096 (2013)

    ADS  Article  Google Scholar 

  121. 121.

    M.A. Bevan, S.L. Eichmann, Curr. Opin. Colloid Interface Sci. 16, 149 (2011)

    Article  Google Scholar 

  122. 122.

    S. Torquato, Soft Matter 5, 1157 (2009)

    ADS  Article  Google Scholar 

  123. 123.

    Z. Li, Y. Yang, J. Zhan, L. Dai, Y. Zhou, Annu. Rev. Biophys. 42, 315 (2013)

    Article  Google Scholar 

  124. 124.

    S. Tanaka, H.A. Scheraga, Macromolecules 9, 945 (1976)

    ADS  Article  Google Scholar 

  125. 125.

    S. Miyazawa, R.L. Jernigan, Macromolecules 18, 534 (1985)

    ADS  Article  Google Scholar 

  126. 126.

    M.J. Sippl, J. Mol. Biol. 213, 859 (1990)

    Article  Google Scholar 

  127. 127.

    P.D. Thomas, K.A. Dill, J. Mol. Biol. 257, 457 (1996)

    Article  Google Scholar 

  128. 128.

    A. Ben-Naim, J. Chem. Phys. 107, 3698 (1997)

    ADS  Article  Google Scholar 

  129. 129.

    M.R. Betancourt, Proteins 76, 72 (2009)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. G. Noid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rudzinski, J.F., Noid, W.G. A generalized-Yvon-Born-Green method for coarse-grained modeling. Eur. Phys. J. Spec. Top. 224, 2193–2216 (2015). https://doi.org/10.1140/epjst/e2015-02408-9

Download citation

Keywords

  • European Physical Journal Special Topic
  • Pair Potential
  • Pair Distribution Function
  • Indirect Contribution
  • Structure Ensemble