Skip to main content
Log in

Radon, CO2 and CH4 as environmental tracers in groundwater/surface water interaction studies − comparative theoretical evaluation of the gas specific water/air phase transfer kinetics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The applicability of radon as environmental tracer in groundwater/surface water interaction studies has been documented in a considerable number of publications. In some of these reports it has also been suggested to validate the radon based results by using CO2 and CH4 as supplementary tracers. The on-site measurement of the three gaseous parameters relies on their extraction from the water followed by the measurement of their concentration by means of mobile gas-in-air detectors. Since most related practical applications require the recording of time series, a continuous extraction of the gases from (e.g.) a permanently pumped water stream is necessary. A precondition for the sound combined interpretation of the resulting time series is that the individual temporal responses of the extracted gas-in-air concentrations to instantaneously changing gas-in-water concentrations are either identical or in reproducible relation to each other. The aim of our theoretical study was the comparison of the extraction behavior of the three gaseous solutes with focus on the individual temporal responses to changing gas-in-water concentrations considering in particular the gas specific water/air phase transfer kinetics. We could show that the overall mass transfer coefficients of radon, CO2 and CH4 result in a virtually similar temporal response to aqueous concentration changes, thus confirming the straightforward combined measurement/utilization of the dissolved gases as environmental tracers in groundwater/surface water interaction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Burnett, P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, I.N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Schollten, T. Stieglitz, M. Taniguchi, J.V. Turner, Sci. Total Environ. 367, 498 (2006)

    Article  Google Scholar 

  2. H. Dulaiova, W.C. Burnett, J.P. Chanton, W.S. Moore, H.J. Bokuniewicz, M.A. Charette, E. Sholkovitz, Cont. Shelf Res. 26, 1971 (2006)

    Article  ADS  Google Scholar 

  3. G. Kim, D.W. Hwang, Geoph. Res. Lett. 29, 23 (2002)

    Google Scholar 

  4. J.E. Cable, W.C. Burnett, J.P. Chanton, G.L. Weatherly, Earth Planet. Sci. Lett 144, 591 (1996)

    Article  ADS  Google Scholar 

  5. W.C. Burnett, H. Dulaiova, J. Environ. Radioactiv. 69, 21 (2003)

    Article  Google Scholar 

  6. M.A. Charette, W.S. Moore, W.C. Burnett, in Radioactivity in the Environment. UTh Series Nuclides in Aquatic Systems, Vol. 13, edited by S. Krishnaswam, J.K. Cochran (Elsevier Ltd., Oxford, UK, 2008), p. 155

  7. M. Schubert, J. Scholten, A. Schmidt, J.F. Comanducci, M.K. Pham, U. Mallast, K. Knoeller, Water 6, 584 (2014)

    Article  Google Scholar 

  8. H. Dulaiova, R. Camilli, P.B. Henderson, M.A. Charette, J. Env. Rad. 101, 553 (2010)

    Article  Google Scholar 

  9. I.R. Santos, D.T. Maher, B.D. Eyre, Environ. Sci. Technol. 46, 7685 (2012)

    Article  ADS  Google Scholar 

  10. M. Call, D.T. Maher, I.R. Santos, S. Ruiz-Halpern, P. Mangion, C.J. Sanders, D.V. Erler, J.M. Oakes, J. Rosentreter, R. Murray, B.D. Eyre, Geochim. Cosmochim. Ac. 150, 211 (2015)

    Article  ADS  Google Scholar 

  11. D.T. Maher, K. Cowley, I.R. Santos, P. Macklin, B.D. Eyre, Mar Chem. 168, 69 (2015)

    Article  Google Scholar 

  12. M. Schubert, A. Schmidt, A. Lopez, M. Balczar, A. Paschke, Radiat. Meas. 43, 111 (2008)

    Article  Google Scholar 

  13. M. Schubert, A. Paschke, D. Bednorz, W. Burkin, T. Stieglitz, Environ. Sci. Technol. 46, 8945 (2012)

    Article  ADS  Google Scholar 

  14. P. Scharlin, in Solubility Data Series, Vol. 62 (Pergamon Press, Oxford, UK, 1996)

  15. H.L. Clever, C.L. Young in Solubility Data Series, Vol. 27/28 (Pergamon Press, Oxford, UK, 1987)

  16. J. Sangster, in Chemicals in the Atmosphere- Solubility, Sources and Reactivity edited by P.G.T. Fogg, J.M. Sangster (IUPAC & Wiley, Chichester/UK, 2003)

  17. J.A. Wesselingh, R. Krishna, Mass transfer (Ellis Horwood Ltd., Chichester, England, 1990)

  18. R. Wanninkhof, J. Geophys. Res. 97, 7373 (1992)

    Article  ADS  Google Scholar 

  19. B. Jähne, G. Heinz, W. Dietrich, J. Geophys. Res. 92, 10767 (1987)

    Article  Google Scholar 

  20. C.L. Yaws, Handbook of Transport Property Data (Gulf Publishing Co., Houston, Texas, USA, 1995)

  21. W. Hirst, G.E. Harrison, Proc. R. Soc. A 169, 573 (1939)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schubert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, M., Paschke, A. Radon, CO2 and CH4 as environmental tracers in groundwater/surface water interaction studies − comparative theoretical evaluation of the gas specific water/air phase transfer kinetics. Eur. Phys. J. Spec. Top. 224, 709–715 (2015). https://doi.org/10.1140/epjst/e2015-02401-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02401-4

Keywords

Navigation