Skip to main content
Log in

Observations on the spatio-temporal patterns of radon along the western fault of the Dead Sea Transform, NW Dead Sea

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An extensive radon anomaly is developed along the western boundary fault of the Dead Sea Transform in the NW sector of the Dead Sea, extending 15–20 km north-south. The highest radon values occur in proximity to the fault scarp. Radon is measured, in gravel (depth 1.5–3 m) at sites located at a) on-fault positions, 1–30 meters east of the fault scarp, and b) off-fault positions located 600–800 the east. Prominent signals occur in the annual and daily periodicity bands, as well as non-periodic multi-day variations (2–20 days). Modulations occur among the annual variation and the multi-day and the daily signals, and between the multi-day and the daily signal. Dissimilar variation patterns occur at on-fault versus off-fault sites in the time domain, and in the relative amplitude of the daily periodicities. Variation patterns and their modulations are similar to those encountered in experimental simulations. It is concluded that: 1) above surface atmospheric influences can be excluded; 2) a remote above surface influence probably drives the periodic components in the annual and diurnal bands; 3) diurnal as well as the multi-day signals are modified and inter-modulated by near field geological (static) and geophysical (dynamic) influences. Systematically different influences are operating at on-fault versus off-fault positions, So far the natures of these near field influences are unidentified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Trique, P. Richon, F. Perrier, J.P. Avouac, J.C. Sabroux, Nature 399, 137 (1999)

    Article  ADS  Google Scholar 

  2. C. Cigolini, F. Salierno, G. Gervino, P. Bergese, C. Marino, M. Russo, P. Prati, V. Ariola, R. Bonetti, S. Begnini, Geophys. Res. Lett. 20, 4035 (2001)

    Article  ADS  Google Scholar 

  3. C. Cigolini, P. Poggi, M. Ripepe, M. Laiolo, C. Ciamberlini, D. Delle Donne, G. Ulivieri, D. Coppola, G. Lacanna, E. Marchetti, D. Piscopo, R. Genco, Volcanol. Geotherm. Res. 184, 381 (2009)

    Article  ADS  Google Scholar 

  4. M. Burton, M. Neri, D. Condarelli, Geophys. Res. Lett. 31, L07618 (2004)

    ADS  Google Scholar 

  5. S. Alparone, B. Behncke, S. Giammanco, M. Neri, E. Privitera, Geophys. Res. Lett. 2, L16307 (2005)

    Article  ADS  Google Scholar 

  6. G. Immè, S. La Delfa, S. Lo Nigro, D. Morelli, G. Patane, Appl. Radiat. Isot. 64, 624 (2006)

    Article  Google Scholar 

  7. R.F. Holub, B.T. Brady, J. Geophys. Res. 86, 1776 (1981)

    Article  ADS  Google Scholar 

  8. M.M. Monnin, J.L. Seidel, Nuclear Instruments, Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 314, 316 (1992)

    Article  Google Scholar 

  9. N. Segovia, M. Mena, J.L. Seidel, M. Monnin, E. Tamez, P. Pena, Radiat. Meas. 25, 547 (1995)

    Article  Google Scholar 

  10. J.P. Toutain, J.C. Baubron, Tectonophysics 304, 1 (1999)

    Article  ADS  Google Scholar 

  11. J. Hartmann, J.K. Levi. Nat. Hazards 34, 279 (2005)

    Article  Google Scholar 

  12. Y. Yasuoka, Y. Kawada, Y. Omori, H. Nagahama, T. Ishikawa, S. Tokonami, M. Hosoda, T. Hashimoto, M. Shinogi, Appl. Geochem. 27, 825 (2012)

    Article  Google Scholar 

  13. F. Aumento, GeofÃsica Internacional 41, 499 (2002)

    Google Scholar 

  14. C.J. Groves-Kirby, A.R. Denman, R.G. Crockett, P.S. Phillips, G.K. Gillmore, Science of the Total Environ. 367, 191 (2006)

    Article  Google Scholar 

  15. R.G. Crockett, G.K. Gillmore, P.S. Phillips, A.R. Denman, C.J. Groves-Kirby, Geophys. Res. Lett. 33, L05308 (2006)

    ADS  Google Scholar 

  16. F.H. Weinlich, E. Faber, A. Bouskova, J. Horalek, M. Teschner, J. Poggenburg, Tectonophysics 421, 89 (2006)

    Article  ADS  Google Scholar 

  17. C. Cigolini, M. Laiolo, D. Coppola, Jour. Env. Rad. 139, 56 (2015)

    Article  Google Scholar 

  18. G. Steinitz, U. Vulkan, B. Lang, A. Gilat, H. Zafrir, Israel Jour. Earth-Sci. 41, 9 (1992)

    Google Scholar 

  19. G. Steinitz, U. Vulkan, B. Lang, Isr. Geol. Surv. Rep. GSI/40/95, 66 (1995)

  20. G. Steinitz, U. Vulkan, B. Lang, Israel Jour. Earth-Sci. 48, 283 (1999)

    Google Scholar 

  21. G. Steinitz, Z.B. Begin, N. Gazit-Yaari, Geology 31, 505 (2003)

    Article  ADS  Google Scholar 

  22. G. Steinitz, P. Kotlarsky, O. Piatibratova, Geophys. J. Internat. 193, 1110 (2013)

    Article  ADS  Google Scholar 

  23. G. Steinitz, O. Piatibratova, S. M. Barbosa, J. Geophys. Res. 112, B10211 (2007)

    Article  ADS  Google Scholar 

  24. G. Steinitz, O. Piatibratova, Geophys. J. Int. 180, 651 (2010)

    Article  ADS  Google Scholar 

  25. G. Steinitz, O. Piatibratova, Solid Earth 1, 99 (2010)

    Article  ADS  Google Scholar 

  26. G. Steinitz, O. Piatibratova, P. Kotlarsky, J. of Environ. Rad. 102, 749 (2011)

    Article  Google Scholar 

  27. P.A. Sturrock, G. Steinitz, E. Fischbach, D. Javorsek, J.H. Jenkins. Astroparticle Physics 36, 18 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Steinitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinitz, G., Piatibratova, O. & Malik, U. Observations on the spatio-temporal patterns of radon along the western fault of the Dead Sea Transform, NW Dead Sea. Eur. Phys. J. Spec. Top. 224, 629–639 (2015). https://doi.org/10.1140/epjst/e2015-02396-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02396-8

Keywords

Navigation