The European Physical Journal Special Topics

, Volume 224, Issue 3, pp 591–596 | Cite as

Corrections to the continuous time semiclassical coherent state path integral

Regular Article
Part of the following topical collections:
  1. Novel Quantum Phases and Mesoscopic Physics in Quantum Gases


By returning to the underlying discrete time formalism, we relate spurious results in coherent state semiclassical path integral calculations, i.e. those involving quadratic fluctuations about classical paths, to the high frequency structure of their propagators. We show how to modify the standard expressions for thermodynamic quantities to yield correct results. These expressions are relevant to a broad range of physical problems, from the thermodynamics of Bose lattice gases to the dynamics of spin systems.


  1. 1.
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific Publishing Company Incorporated, 2009)Google Scholar
  2. 2.
    J.R. Klauder, The Feynman Path Integral: An Historical Slice The Feynman Path Integral, 1948 [arXiv preprint] [arXiv: quant-ph/0303034] (2003)
  3. 3.
    J.R. Klauder, B.-S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)Google Scholar
  4. 4.
    A.M. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, 1986)Google Scholar
  5. 5.
    J.S. Langer, Phys. Rev. 167, 183 (1968)CrossRefADSGoogle Scholar
  6. 6.
    W.M. Zhang, R. Gilmore, D.H. Feng, Rev. Mod. Phys. 62, 867 (1990)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    E. Kochetov, V. Yarunin, Phys. Rev. B 56, 2703 (1997)CrossRefADSGoogle Scholar
  8. 8.
    W.M. Zhang [Arxiv preprint] [hep-th/9908117] (1999)Google Scholar
  9. 9.
    M. Pletyukhov, Ch. Amann, M. Mehta, M. Brack, Phys. Rev. Lett. 89, 116601 (2002)CrossRefADSGoogle Scholar
  10. 10.
    H. Kleinert, Z. Narzikulov, A. Rakhimov [arXiv preprint] [arXiv:1303.1642] (2013), p. 1
  11. 11.
    A. Altland, B. Simons, Condensed Matter Field Theory, second edition (Cambridge University Press, Cambridge, UK, 2010)Google Scholar
  12. 12.
    H.G. Solari, J. Math. Phys. 28, 1097 (1987)CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    E.a. Kochetov, J. Math. Phys. 36, 4667 (1995)CrossRefMATHMathSciNetADSGoogle Scholar
  14. 14.
    M.S. K.-Su Park, A. Garg, J. Math. Phys. 41, 8025 (2000)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    J.H. Wilson, V. Galitski, Phys. Rev. Lett. 106, 110401 (2011)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    K. Funahashi, T. Kashiwa, S. Nima, S. Sakoda, Nucl. Phys. B 453, 508 (1995)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. Enz, R. Schilling, J. Phys. C: Solid State Phys. 19, 1765 (1986)CrossRefADSGoogle Scholar
  18. 18.
    K. Funahashi, T. Kashiwa, S. Sakoda, K. Fujii, J. Math. Phys. 36, 3232 (1995)CrossRefMATHMathSciNetADSGoogle Scholar
  19. 19.
    V.I. Belinicher, C. Providencia, J. da Providencia, J. Phys. A: Math, General 30, 5633 (1999)CrossRefADSGoogle Scholar
  20. 20.
    M. Baranger, MAM de Aguiar, J. Phys. A: Math. General, 7227 (2001)Google Scholar
  21. 21.
    J. Shibata, S. Takagi, Phys. Atomic Nuclei 64, 2206 (2001)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    A. Garg, E. Kochetov, K.-S. Park, M. Stone, J. Math. Phys. 44, 48 (2003)CrossRefMATHMathSciNetADSGoogle Scholar
  23. 23.
    C. Braun, A. Garg, J. Math. Phys. 48, 032104 (2007)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    C. Braun, A. Garg, J. Math. Phys. 48, 102104 (2007)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    T.F. Viscondi, Marcus a.M. de Aguiar, J. Math. Phys. 52, 052104 (2011)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    V.V. Smirnov, J. Phys. A: Math. Theor. 43, 465303 (2010)CrossRefADSGoogle Scholar
  27. 27.
    Y. Yanay, E.J. Mueller, Superfluid Density of Weakly Interacting Bosons on a Lattice [arXiv preprint] [arXiv:1209.2446], 14850(3) (2012)

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA

Personalised recommendations