Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 3, pp 585–590 | Cite as

Hyperspherical treatment of strongly-interacting few-fermion systems in one dimension

  • A. G. Volosniev
  • D. V. Fedorov
  • A. S. Jensen
  • N. T. Zinner
Regular Article
Part of the following topical collections:
  1. Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

Abstract

We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using the hyperspherical formalism. Next we discuss the behavior of the energy for the N-body system.

Keywords

Wave Function EUROPEAN Physical Journal Special Topic Harmonic Trap Ground State Solution Lead Order Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Serwane, et al., Science 332, 336 (2011)CrossRefADSGoogle Scholar
  2. 2.
    G. Zürn, et al., Phys. Rev. Lett. 108, 075303 (2012)CrossRefADSGoogle Scholar
  3. 3.
    S.E. Gharashi, D. Blume, Phys. Rev. Lett. 111, 045302 (2013)CrossRefADSGoogle Scholar
  4. 4.
    T. Sowiński, et al., Phys. Rev. A 88, 033607 (2013)CrossRefADSGoogle Scholar
  5. 5.
    J. Lindgren, et al., New J. Phys. 16, 063003 (2014)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A.G. Volosniev, et al., Nature Commun. 5, 5300, doi:  10.1038/ncomms6300 (2014)CrossRefADSGoogle Scholar
  7. 7.
    J.H. Macek, J. Phys. B 1, 831 (1968)CrossRefADSGoogle Scholar
  8. 8.
    E. Nielsen, et al., Physics Reports 347, 373 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    O.I. Kartavtsev, et al., ZhETF 135, 419 (2009)Google Scholar
  10. 10.
    N.T. Zinner, et al. EPL 107, 60003 (2014)CrossRefADSGoogle Scholar
  11. 11.
    N.L. Harshman, Phys. Rev. A 86, 052122 (2012)CrossRefADSGoogle Scholar
  12. 12.
    H.T. Coelho, J.E. Hornos, Phys. Rev. A 43, 6379 (1991)CrossRefADSGoogle Scholar
  13. 13.
    M. Girardeau, J. Math. Phys. 1, 516 (1960)CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    A.G. Volosniev, et al., Few-Body Systems, doi:  10.1007/s00601-013-0776-0 (2013)
  15. 15.
    A.S. Dehkharghani, et al. [arXiv:1409.4224]
  16. 16.
    N.P. Mehta, Phys. Rev. A 89, 052706 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A. G. Volosniev
    • 1
  • D. V. Fedorov
    • 1
  • A. S. Jensen
    • 1
  • N. T. Zinner
    • 1
  1. 1.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations