Skip to main content
Log in

How to deal with negative surface heat capacities

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Negative surface heat capacities are observed for many liquids, at least in certain temperature regimes. Since thermodynamic stability of a system requires positive heat capacities, it is usually argued that the surface must not be considered as an autonomous system. This, however, is not possible when the energy balance of the surface plays the role of a boundary condition for the field equations, e.g. the heat diffusion equation. A heat pulse supplied to the surface of a liquid and the stretching of a liquid film provide two examples to demonstrate that negative surface heat capacities may lead to unbounded and unconfined growth of the temperature disturbances in the liquid. To deal with the instabilities associated with negative surface heat capacities it is proposed to introduce a surface layer of small, but finite, thickness that is defined solely in terms of macroscopic thermodynamic quantities. By considering the energy balance of the surface layer, which is an open system, it is shown that the isobaric heat capacity of the liquid contained in the surface layer is to be added to the (possibly negative) surface heat capacity to obtain a positive total heat capacity of the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Schneider, S. Haas, K. Ponweiser, Repetitorium Thermodynamik, 3. Aufl. (Oldenbourg, München, 2012)

  2. W. Schneider, in Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, 2013, edited by M. Pilotelli and G.P. Beretta (Cartolibreria SNOOPY, Brescia, 2013), p. 178

  3. J.D. Lewins, Int. J. Mech. Eng. Edu. 27, 217 (1997)

    Article  Google Scholar 

  4. D.E. Goldsack, L.J. Paquette, Can. J. Chem. 67, 2201 (1989)

    Article  Google Scholar 

  5. L. Haar, et al., NBS/NRC Wasserdampftafeln (Springer, Berlin, 1988)

  6. E.L. Koschmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, Cambridge, 1993)

  7. H.C. Kuhlmann, in Free Surface Flows, edited by H.C. Kuhlmann, H.-J. Rath (CISM Courses and Lectures No. 391, Springer, Wien/New York, 1998)

  8. M.G. Velarde, in Interfacial Phenomena and the Marangoni Effect, edited by M.G. Velarde, R.Kh. Zeytounian (CISM Courses and Lectures No. 428, Springer, Wien/New York, 2002)

  9. R.Kh. Zeytounian, in Interfacial Phenomena and the Marangoni Effect, edited by M.G. Velarde, R.Kh. Zeytounian (CISM Courses and Lectures No. 428, Springer, Wien/New York, 2002)

  10. S. Fujikawa, T. Yano, M. Watanabe, Vapor-Liquid Interfaces, Bubbles and Droplets (Springer, Berlin Heidelberg, 2011)

  11. C.S. Iorio, O.N. Goncharova, O.A. Kabov, Comp. Thermal Sci. 3, 333 (2011)

    Article  Google Scholar 

  12. S. Shklyaev, A.A. Alabuzhev, M. Khenner, Phys. Review E 85, 016328 (2012)

    Article  ADS  Google Scholar 

  13. R. Mathie, H. Nakamura, C.N. Markides, Int. J. Heat Mass Transfer 56, 819 (2013)

    Article  Google Scholar 

  14. F. Denner, B.G.M. van Wachem, Num. Heat Transfer B 65, 218 (2014)

    Article  ADS  Google Scholar 

  15. R. Defay, I. Prigogine, A. Sanfeld, J. Coll. Interface Sci. 58, 498 (1977)

    Article  Google Scholar 

  16. L.G. Napolitano, Acta Astronautica 6, 1093 (1979)

    Article  ADS  MATH  Google Scholar 

  17. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1984)

  18. E.R.G. Eckert, R.M. Drake Jr., Analysis of Heat and Mass Transfer (McGraw-Hill Kogakusha, Tokyo, 1972)

  19. L. Prandtl, Ann. Phys. 1(6), 59 (1947)

    Article  Google Scholar 

  20. K. Glawatsky, D. Bedeaux, in Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, 2013, edited by M. Pilotelli and G.P. Beretta (Cartolibreria SNOOPY, Brescia, 2013), p. 162

  21. M. Baus, R. Lovett, J. Chem. Phys. 111, 5555 (1999)

    Article  ADS  Google Scholar 

  22. F. Llovell, O. Vilaseca, L.F. Vega, in Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, 2013, edited by M. Pilotelli and G.P. Beretta (Cartolibreria SNOOPY, Brescia, 2013), p. 169

  23. A.G. Lamorgese, D. Molin, R. Mauri, in Multiphase Microfluidics: the Diffusive Interface Model, edited by R. Mauri (CISM Courses and Lectures No. 538, Springer, Wien/New York, 2012)

  24. L.M. Pismen, in Interfacial Phenomena and the Marangoni Effect, edited by M.G. Velarde, R.Kh. Zeytounian (CISM Courses and Lectures No. 428, Springer, Wien/New York, 2002)

  25. P.J. Davies, in Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, 2013, edited by M. Pilotelli and G.P. Beretta (Cartolibreria SNOOPY, Brescia, 2013), p. 35

  26. W.L. Masterton, J. Bianchi, E.J. Slowinski, Jr., J. Phys. Chem. 67, 615 (1963)

    Article  Google Scholar 

  27. M.R. Moldover, Phys. Rev. A 31, 1022 (1985)

    Article  ADS  Google Scholar 

  28. K. Fumoto, M. Kawaji, Thermal Sci. Eng. 19, 1 (2011)

    Google Scholar 

  29. H.C. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1946; reprinted Clarendon Press, Oxford, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, W. How to deal with negative surface heat capacities. Eur. Phys. J. Spec. Top. 224, 447–458 (2015). https://doi.org/10.1140/epjst/e2015-02373-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02373-3

Keywords

Navigation