Skip to main content

Advertisement

Log in

A quantum annealing approach for fault detection and diagnosis of graph-based systems

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. de Kleer, B.C. Williams, Artific. Intell. 32, 97 (1987)

    Article  MATH  Google Scholar 

  2. S. Narasimhan, L. Brownston, Hyde – a general framework for stochastic and hybrid modelbased diagnosis. 18th International Workshop on Principles of Diagnosis (DX 07), 162 (2007)

  3. A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)

    Article  ADS  Google Scholar 

  4. T. Kadowaki, H. Nishimori, Phys. Rev. E. 58, 5355 (1998)

    Article  ADS  Google Scholar 

  5. G.E. Santoro, E. Tosatti, J. Phys. A 39, R393 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)

    Article  ADS  Google Scholar 

  8. P. Amara, D. Hsu, J.E. Straub, J. Phys. Chem. 97, 6715 (1993)

    Article  Google Scholar 

  9. E. Farhi, et al., Science 292, 472 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. G. Santoro, R. Martonák, E. Tosatti, R. Car, Science 295, 2427 (2002)

    Article  ADS  Google Scholar 

  11. J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)

    Article  ADS  Google Scholar 

  12. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. C.C. McGeoch, C. Wang, Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proc. of the ACM International Conference on Computing Frontiers, CF ’13, 23:1–23:11 (ACM, New York, NY, USA, 2013)

  14. S. Boixo, et al., Nat. Phys. 10, 218 (2014)

    Article  Google Scholar 

  15. T.F. Rønnow, et al., Defining and detecting quantum speedup [arXiv:1401.2910] (2014)

  16. H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. X 4, 021008 (2014)

    Google Scholar 

  17. D. Venturelli, et al., Quantum optimization of fully-connected spin glasses (submitted) (2014)

  18. GoogleQuantumA.I.Lab. Where do we stand on benchmarking the D-Wave 2? https://plus.google.com/+QuantumAILab/posts/DymNo8DzAYi (2014)

  19. A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, A. Aspuru-Guzik, Phys. Rev. A 78, 012320 (2008)

    Article  ADS  Google Scholar 

  20. A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)

    Article  ADS  Google Scholar 

  21. E. Rieffel, et al., A case study in programming a quantum annealer for hard operational planning problems (submitted) (2014)

  22. B. O’Gorman, A. Perdomo-Ortiz, R. Babbush, A. Aspuru-Guzik, V.N. Smelyanskiy, Bayesian network structure learning using quantum annealing (submitted) (2014)

  23. F. Gaitan, L. Clark, Phys. Rev. Lett. 108, 010501 (2012)

    Article  ADS  Google Scholar 

  24. T. Kurtoglu, et al., First international diagnosis competition – DXC’09. In Proc. 20th International Workshop on Principles of Diagnosis, DX’09, 383 (2009)

  25. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution [arXiv:quant-ph/0001106] (2000)

  26. T. Hogg, Phys. Rev. A 67, 022314 (2003)

    Article  ADS  Google Scholar 

  27. R. Harris, et al., Phys. Rev. B 82, 024511 (2010)

    Article  ADS  Google Scholar 

  28. M.W. Johnson, et al. Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  29. F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Cai, B. Macready, A. Roy, A practical heuristic for finding graph minors [arXiv:1406.2741] (2014)

  32. A. Perdomo-Ortiz, S.E. Venegas-Andraca, A. Aspuru-Guzik, Quantum Inf. Process. 10, 33 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. V. Choi, Minor-embedding in adiabatic quantum computation: I. the parameter setting problem [arXiv:0804.4884] (2008)

  34. V. Choi, Quant. Inf. Proc. 10, 343 (2011)

    Article  MATH  Google Scholar 

  35. C. Klymko, B. Sullivan, T. Humble, Adiabatic quantum programming: minor embedding with hard faults Quantum Information Processing, 1 (2013)

  36. A. Perdomo-Ortiz, J. Fluegemann, V.N. Smelyanskiy, R. Biswas, Programming and solving real-world applications on a quantum annealing device (submitted) (2014)

  37. R. Harris, et al., Phys. Rev. B. 81, 134510 (2010)

    Article  ADS  Google Scholar 

  38. A. Kuegel, Improved exact solver for the weighted max-sat problem, edited by Berre, D. L. POS-10, Vol. 8 of EPiC Series, 15 (EasyChair, 2012)

  39. S.V. Isakov, I.N. Zintchenko, T.F. Ronnow, M. Troyer, Optimized simulated annealing for ising spin glasses, [arXiv:1401.1084] (2014)

  40. E.G. Rieffel, D. Venturelli, I. Hen, M. Do, J. Frank, Phase transitions in planning problems: Design and analysis or parametrized families of hard planning problems AAAI-14 (accepted) (2014)

  41. R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Adv. Chem. Phys. 155, 201 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Perdomo-Ortiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S. et al. A quantum annealing approach for fault detection and diagnosis of graph-based systems. Eur. Phys. J. Spec. Top. 224, 131–148 (2015). https://doi.org/10.1140/epjst/e2015-02347-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02347-y

Keywords

Navigation