Abstract
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
J. de Kleer, B.C. Williams, Artific. Intell. 32, 97 (1987)
S. Narasimhan, L. Brownston, Hyde – a general framework for stochastic and hybrid modelbased diagnosis. 18th International Workshop on Principles of Diagnosis (DX 07), 162 (2007)
A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)
T. Kadowaki, H. Nishimori, Phys. Rev. E. 58, 5355 (1998)
G.E. Santoro, E. Tosatti, J. Phys. A 39, R393 (2006)
A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)
P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)
P. Amara, D. Hsu, J.E. Straub, J. Phys. Chem. 97, 6715 (1993)
E. Farhi, et al., Science 292, 472 (2001)
G. Santoro, R. Martonák, E. Tosatti, R. Car, Science 295, 2427 (2002)
J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)
S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)
C.C. McGeoch, C. Wang, Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proc. of the ACM International Conference on Computing Frontiers, CF ’13, 23:1–23:11 (ACM, New York, NY, USA, 2013)
S. Boixo, et al., Nat. Phys. 10, 218 (2014)
T.F. Rønnow, et al., Defining and detecting quantum speedup [arXiv:1401.2910] (2014)
H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. X 4, 021008 (2014)
D. Venturelli, et al., Quantum optimization of fully-connected spin glasses (submitted) (2014)
GoogleQuantumA.I.Lab. Where do we stand on benchmarking the D-Wave 2? https://plus.google.com/+QuantumAILab/posts/DymNo8DzAYi (2014)
A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, A. Aspuru-Guzik, Phys. Rev. A 78, 012320 (2008)
A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)
E. Rieffel, et al., A case study in programming a quantum annealer for hard operational planning problems (submitted) (2014)
B. O’Gorman, A. Perdomo-Ortiz, R. Babbush, A. Aspuru-Guzik, V.N. Smelyanskiy, Bayesian network structure learning using quantum annealing (submitted) (2014)
F. Gaitan, L. Clark, Phys. Rev. Lett. 108, 010501 (2012)
T. Kurtoglu, et al., First international diagnosis competition – DXC’09. In Proc. 20th International Workshop on Principles of Diagnosis, DX’09, 383 (2009)
E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution [arXiv:quant-ph/0001106] (2000)
T. Hogg, Phys. Rev. A 67, 022314 (2003)
R. Harris, et al., Phys. Rev. B 82, 024511 (2010)
M.W. Johnson, et al. Nature 473, 194 (2011)
F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)
T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012)
J. Cai, B. Macready, A. Roy, A practical heuristic for finding graph minors [arXiv:1406.2741] (2014)
A. Perdomo-Ortiz, S.E. Venegas-Andraca, A. Aspuru-Guzik, Quantum Inf. Process. 10, 33 (2011)
V. Choi, Minor-embedding in adiabatic quantum computation: I. the parameter setting problem [arXiv:0804.4884] (2008)
V. Choi, Quant. Inf. Proc. 10, 343 (2011)
C. Klymko, B. Sullivan, T. Humble, Adiabatic quantum programming: minor embedding with hard faults Quantum Information Processing, 1 (2013)
A. Perdomo-Ortiz, J. Fluegemann, V.N. Smelyanskiy, R. Biswas, Programming and solving real-world applications on a quantum annealing device (submitted) (2014)
R. Harris, et al., Phys. Rev. B. 81, 134510 (2010)
A. Kuegel, Improved exact solver for the weighted max-sat problem, edited by Berre, D. L. POS-10, Vol. 8 of EPiC Series, 15 (EasyChair, 2012)
S.V. Isakov, I.N. Zintchenko, T.F. Ronnow, M. Troyer, Optimized simulated annealing for ising spin glasses, [arXiv:1401.1084] (2014)
E.G. Rieffel, D. Venturelli, I. Hen, M. Do, J. Frank, Phase transitions in planning problems: Design and analysis or parametrized families of hard planning problems AAAI-14 (accepted) (2014)
R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Adv. Chem. Phys. 155, 201 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S. et al. A quantum annealing approach for fault detection and diagnosis of graph-based systems. Eur. Phys. J. Spec. Top. 224, 131–148 (2015). https://doi.org/10.1140/epjst/e2015-02347-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2015-02347-y