Skip to main content
Log in

Brownian motion in electrochemical nanodevices

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Diffusion dominates mass transport in most electrochemical systems. In classical experimental systems on the micrometer scale or larger, this is adequately described at the mean-field level. However, nanoscale detection devices are being developed in which a handful or even single molecules can be detected. Brownian dynamics become manifest in these systems via the associated fluctuations in electrochemical signals. Here we describe the state of the art of these electrochemical nanodevices, paying particular attention to the role of Brownian dynamics and emphasizing areas in which theoretical understanding remains limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.J. Bard, L.R. Faulkner, Electrochemical methods - Fundamentals and Applications, 2nd ed. (John Wiley & Sons, New York, 2001), p. 137

  2. L. Rassaei, P.S. Singh, S.G. Lemay Anal. Chem. 2011, 3974 (2011)

    Article  Google Scholar 

  3. S.G. Lemay, S. Kang, K. Mathwig, P.S. Singh, Acc. Chem. Res. 46, 369 (2013)

    Article  Google Scholar 

  4. K.B. Oldham, J. Electroanal. Chem. 323, 53 (1992)

    Article  Google Scholar 

  5. V.A. Tyagai, Electrochim. Acta 16, 1647 (1971)

    Article  Google Scholar 

  6. G. Blanc, C. Gabrielli, M. Keddam, Electrochim. Acta 20, 687 (1975)

    Article  Google Scholar 

  7. G. Blanc, I. Epelboin, C. Gabrielli, M. Keedam, J. Electroanal. Chem. 75, 97 (1977)

    Article  Google Scholar 

  8. C. Gabrielli, F. Huet, M. Keddam, Electrochim. Acta 31, 1025 (1986)

    Article  Google Scholar 

  9. A. Hassibi, R. Navid, R.W. Dutton, T.H. Lee, J. Appl. Phys. 96, 1074 (2004)

    Article  ADS  Google Scholar 

  10. G. Mézáros, I. Szenes, B. Lengyel, Electrochem. Comm. 6, 1185 (2004)

    Article  Google Scholar 

  11. D. Krapf, Phys. Chem. Chem. Phys. 15, 459 (2013)

    Article  Google Scholar 

  12. O. Niwa, M. Morita, H. Tabei, Anal. Chem. 62, 447 (1990)

    Article  Google Scholar 

  13. E.D. Goluch, B. Wolfrum, P.S. Singh, M.A.G. Zevenbergen, S.G. Lemay, Anal. Bioanal. Chem. (394), 447 (2009)

    Article  Google Scholar 

  14. G. Zhao, D.M. Giolando, J.R. Kirchhoff, Anal. Chem. 67, 1491 (1995)

    Article  Google Scholar 

  15. C.X. Ma, N.M. Contento, L.R. Gibson, P.W. Bohn, ACS Nano 7, 5483 (2013)

    Article  Google Scholar 

  16. C.X. Ma, N.M. Contento, L.R. Gibson, P.W. Bohn, Anal. Chem. 85, 9882 (2013)

    Article  Google Scholar 

  17. L.B. Anderson, C.N. Reilley, J. Electroanal. Chem. 10, 538 (1965)

    Google Scholar 

  18. F.R.F. Fan, A.J. Bard, Science 267, 871 (1995)

    Article  ADS  Google Scholar 

  19. P. Sun, M.V. Mirkin, J. Am. Chem. Soc. 130, 8241 (2008)

    Article  Google Scholar 

  20. M.A.G. Zevenbergen, B.L. Wolfrum, E.D. Goluch, P.S. Singh, S.G. Lemay, J. Am. Chem. Soc. 131, 11471 (2009)

    Article  Google Scholar 

  21. K. Mathwig, S.G. Lemay, Electrochim. Acta 112, 943 (2013)

    Article  Google Scholar 

  22. M.A.G. Zevenbergen, D. Krapf, M.R. Zuiddam, S.G. Lemay, Nano Lett. 7, 384 (2007)

    Article  ADS  Google Scholar 

  23. S.M. Bezrukov, A.M. Berezhkovskii, M.A. Pustovoit, A. Szabo, J. Chem. Phys. 113, 8206 (2000)

    Article  ADS  Google Scholar 

  24. M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, Anal. Chem. 81, 8203 (2009)

    Article  Google Scholar 

  25. P.S. Singh, E. Kätelhön, K. Mathwig, B. Wolfrum, S.G. Lemay, ACS Nano 6, 9662 (2012)

    Article  Google Scholar 

  26. E. Kätelhön, K.J. Krause, P.S. Singh, S.G. Lemay, B. Wolfrum, J. Am. Chem. Soc. 135, 8874 (2013)

    Article  Google Scholar 

  27. E. Kätelhön, K.J. Krause, K. Mathwig, S.G. Lemay, B. Wolfrum, ACS Nano 8, 4924 (2014)

    Article  Google Scholar 

  28. D. Magde, E. Elson, W.W. Webb, Phys. Rev. Lett. 29, 705 (1972)

    Article  ADS  Google Scholar 

  29. K. Mathwig, D. Mampallil, S. Kang, S.G. Lemay, Phys. Rev. Lett. 109, 118302 (2012)

    Article  ADS  Google Scholar 

  30. D. Mampallil, K. Mathwig, S. Kang, S.G. Lemay, J. Phys. Chem. Lett. 5, 636 (2014)

    Article  Google Scholar 

  31. P.S. Singh, H.-S.M. Chan, S. Kang, S.G. Lemay, J. Am. Chem. Soc. 45, 18289 (2011)

    Article  Google Scholar 

  32. S. Kang, K. Mathwig, S.G. Lemay, Lab Chip 12, 1262 (2012)

    Article  Google Scholar 

  33. M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, Nano Lett. 11, 2881 (2011)

    Article  Google Scholar 

  34. S. Kang, A.F. Nieuwenhuis, K. Mathwig, D. Mampallil, S.G. Lemay, ACS Nano 7, 10931 (2013)

    Article  Google Scholar 

  35. W. Fellner, An Introduction to Probability Theory and Its Application, 3rd edn. (Wiley, New York, 1968)

  36. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

  37. K. Mathwig, S.G. Lemay, Micromachines 4, 138 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lemay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, K.J., Mathwig, K., Wolfrum, B. et al. Brownian motion in electrochemical nanodevices. Eur. Phys. J. Spec. Top. 223, 3165–3178 (2014). https://doi.org/10.1140/epjst/e2014-02325-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02325-5

Keywords

Navigation