Skip to main content

Nonlinear dynamics of Ytterbium-doped fiber laser Q-switched using acousto-optical modulator


A comprehensive experimental analysis of the dynamics of an ytterbium-doped fiber laser actively Q-switched (QS) using an intracavity acousto-optical modulator (AOM) is presented. It is shown that type of QS pulsing strongly depends on AOM repetition rate and pump power. In particular, at low repetition rates, including zero-rate, and at relatively high pump powers peculiar QS pulsing, switched by stimulated Brillouin scattering (SBS), is established in the laser. The cause of such kind of pulsing is the SBS-process boosted by spurious narrow-line CW lasing that arises in auxiliary low-Q cavity formed by an output coupler (in our experiments — fiber Bragg gratings) and weak reflections from blocked AOM. The parameters’ area where this regime occurs is limited by certain values of pump power and AOM repetition rate. At increasing AOM repetition rate or decreasing pump power spurious CW lasing is not attained in the system; consequently, the SBS type of QS fades, while “conventional” QS (CQS) lasing is established in the system and remains. However CQS pulsing strongly suffers the nonlinear-dynamics effects: depending on AOM repetition rate and pump power the laser switches to common P1, P2, or P3 attractors, when QS pulses arise at sub-harmonics of AOM repetition rate, or to the specific transient regimes between them, or to chaotic operation. These and other sides (e.g. pulse jittering) of operation of the QS ytterbium-doped fiber laser with AOM are under scope of the present review as they have big interest for practical applications.

This is a preview of subscription content, access via your institution.


  1. D.J. Richardson, J. Nilsson, W.A. Clarkson, J. Opt. Soc. Amer. B 27, B63 (2010)

    Article  Google Scholar 

  2. Y.O. Barmenkov, A.V. Kir’yanov, M.V. Andres, IEEE J. Quantum Electron. 48, 1484 (2012)

    Article  ADS  Google Scholar 

  3. Y. Wang, C.-Q. Xu, Opt. Lett. 29, 1060 (2004)

    Article  ADS  Google Scholar 

  4. Y. Wang, C.-Q. Xu, Prog. Quantum Electron. 31, 131 (2007)

    Article  ADS  Google Scholar 

  5. S.A. Kolpakov, Y.O. Barmenkov, A.D. Guzman-Chavez, A.V. Kir’yanov, J.L. Cruz, A. Diez, M.V. Andres, IEEE J. Quantum Electron. 47, 928 (2011)

    Article  Google Scholar 

  6. Y. Wang, A. Martinez-Rios, H. Po, Optical Fiber Technol. 10, 201 (2004)

    Article  ADS  Google Scholar 

  7. J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, O.G. Okhotnikov, Optics Express 18, 18543 (2010)

    Article  ADS  Google Scholar 

  8. A.V. Kir’yanov, Y.O. Barmenkov, M.V. Andres, Laser Physics Lett. 10, 055112 (2013)

    Article  ADS  Google Scholar 

  9. A.B. Grudinin, D.N. Payne, P.W. Turner, L.J.A. Nilsson, M.N. Zervas, M. Ibsen, M.K. Durkin, USA Patent No. 6826335 (November 30, 2004)

  10. D.A. Grukh, A.E. Levchenko, A.S. Kurkov, V.M. Paramonov, Quantum Electron 35, 442 (2005)

    Article  ADS  Google Scholar 

  11. Y.O. Barmenkov, A.V. Kir’yanov, J.L. Cruz, M.V. Andres, Applied Physics Lett. 44, 091124 (2014)

    Article  ADS  Google Scholar 

  12. Y.O. Barmenkov, A.V. Kir’yanov, J.L. Cruz, M.V. Andres, IEEE J. Selected Topics Quant. Electron. 20, 0902208 (2014)

    Article  Google Scholar 

  13. A.V. Kir’yanov, N.N. Il’ichev, Laser Physics Lett. 8, 305 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Kir’yanov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barmenkov, Y.O., Kir’yanov, A.V. & Andres, M.V. Nonlinear dynamics of Ytterbium-doped fiber laser Q-switched using acousto-optical modulator. Eur. Phys. J. Spec. Top. 223, 2775–2788 (2014).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Pump Power
  • European Physical Journal Special Topic
  • Stimulate Raman Scattering
  • Stimulate Brillouin Scattering
  • Stimulate Brillouin Scattering Threshold