Skip to main content
Log in

Generalized formulation of the interactions between soft spheres

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The goal of this paper is to identify the most general formulation that consistently links the different degrees of freedom in a contact between spherical soft particles. These contact laws have two parts: a set of “generalized contact velocities” that characterize the relative motion of the two particles, and a set of “generalized contact forces” that characterize the interparticle forces. One well known constraint on contact models is that the contact velocities must be objective. This requirement fixes the number of linearly independent contact velocities. We also present a previously unnoticed (in this context) constraint, namely, that the velocities and forces must be related in such a way that the stiffness matrix is symmetric. This constraint also places restrictions on the coupling between the contact forces. Within our generalized contact model, we discuss the expression for rolling velocity that need to be used in the calculation of rolling resistance, and the risk or producing perpetual mobile when other expressions of rolling velocity are using instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A. Cundall, O.D. Strack, Geotech. 29, 47 (1979)

    Article  Google Scholar 

  2. H.J. Herrmann, J. Hovi, S. Luding, NATO-ASI Series E 350 (Kluwer academic publishers, Dordrecht, 1998)

  3. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  4. C. Goldenberg, I. Goldhirsch, Phys. Rev. E 77, 041303 (2008)

    Article  ADS  Google Scholar 

  5. D.M. Mueth, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 3164 (1998)

    Article  ADS  Google Scholar 

  6. Y. Fukumoto, H. Sakaguchi, A. Murakami, Granular Matter 15, 175 (2013)

    Article  Google Scholar 

  7. M. Oda, J. Konishi, S. Nemat-Nasser, Mech. Mater. 1, 269 (1982)

    Article  Google Scholar 

  8. K. Iwashita, M. Oda, J. Eng. Mech. 124, 285 (1998)

    Article  Google Scholar 

  9. R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, S. Luding, Granular Matter 16(3), 281 (2014)

    Article  Google Scholar 

  10. K. Iwashita, M. Oda, Powder Technol. 109, 192 (2000)

    Article  Google Scholar 

  11. A. Tordesillas, D. Walsh, Powder Technol. 124, 106 (2002)

    Article  Google Scholar 

  12. R. Kirsch, U. Bröckel, L. Brendel, J. Török, Granular Matter 13, 517 (2011)

    Article  Google Scholar 

  13. S. Luding, Granular Matter 10, 235 (2008)

    Article  MATH  Google Scholar 

  14. Y. Wang, P. Mora, Pure Appl. Geophys. 165, 609 (2008)

    Article  ADS  Google Scholar 

  15. K. Iwashita, M. Oda, J. Eng. Mech. 124, 286 (1998)

    Article  Google Scholar 

  16. A. Tordesillas, D. Walsh, Powder Technol. 124, 106 (2002)

    Article  Google Scholar 

  17. H.M. Shodja, E.G. Nezami, Int. J. Numer. Anal. Meth. Geomech. 27, 403 (2003)

    Article  MATH  Google Scholar 

  18. K. Bagi, M.R. Kuhn, J. Appl. Mech 71, 493 (2004)

    Article  MATH  ADS  Google Scholar 

  19. M.R. Kuhn, K. Bagi, J. Eng. Mech. 130, 826 (2004)

    Article  Google Scholar 

  20. F. Alonso-Marroquin, I. Vardoulakis, H. Herrmann, D. Weatherley, P. Mora, Phys. Rev. E 74, 031306 (2006)

    Article  ADS  Google Scholar 

  21. J. Ai, J.F. Chen, J.M. Rotter, J.Y. Ooi, Powder Technol. 206, 269 (2011)

    Article  Google Scholar 

  22. A. Mohamed, M. Gutierrez, Granular Matter 12, 527 (2010)

    Article  MATH  Google Scholar 

  23. L. Brendel, J. Török, R. Kirsch, U. Bröckel, Granular Matter 13, 777 (2011)

    Article  Google Scholar 

  24. M. Jiang, H.S. Yu, D. Harris, Comput. Geotech. 32, 340 (2005)

    Article  Google Scholar 

  25. Y.C. Wang, F. Alonso-Marroquin, S. Xue, J. Xie, Particuology, available online 18 August (2014)

  26. J. Roux, Phys. Rev. E 61, 6802 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  27. T.R. Chandrupatla, A.D. Belegundu, T. Ramesh, C. Ray, Introduction to Finite Elements in Engineering (Prentice-Hall Englewood Cliffs, New Jersey, 1991)

  28. K. Bagi, M.R. Kuhn, J. Appl. Mech. 71, 493 (2004)

    Article  MATH  ADS  Google Scholar 

  29. M.R. Kuhn, K. Bagi, Int. J. Solids Struct. 41, 5793 (2004)

    Article  MATH  Google Scholar 

  30. A. Singh, V. Magnanimo, S. Luding, Powder Technol. (2013)

  31. N.J. Brown, J.F. Chen, J.Y. Ooi, Granular Matter., 1 (2014)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Marroquín, F., McNamara, S. Generalized formulation of the interactions between soft spheres. Eur. Phys. J. Spec. Top. 223, 2227–2240 (2014). https://doi.org/10.1140/epjst/e2014-02260-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02260-5

Keywords

Navigation