Skip to main content
Log in

Thermodynamics is more powerful than the role to it reserved by Boltzmann-Gibbs statistical mechanics

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We briefly review the connection between statistical mechanics and thermodynamics. We show that, in order to satisfy thermo-dynamics and its Legendre transformation mathematical frame, the celebrated Boltzmann-Gibbs (BG) statistical mechanics is sufficient but not necessary. Indeed, the N →∞ limit of statistical mechanics is expected to be consistent with thermodynamics. For systems whose elements are generically independent or quasi-independent in the sense of the theory of probabilities, it is well known that the BG theory (based on the additive BG entropy) does satisfy this expectation. However, in complete analogy, other thermostatistical theories (e.g., q-statistics), based on nonadditive entropic functionals, also satisfy the very same expectation. We illustrate this standpoint with systems whose elements are strongly correlated in a specific manner, such that they escape the BG realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, The Saturday Review, November 26, 9–12 and 36–44 (1949)

  2. M.J. Klein, Science 157, 509 (1967)

    Article  ADS  Google Scholar 

  3. A.S. Eddington, The Nature of the Physical World (The Macmillan Company, New York, 1929), p. 74. In his words: The law that entropy always increases, holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations–then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation–well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics, I can give you no hope; there is nothing for it but to collapse in deepest humiliation

  4. J.W. Gibbs, Elementary Principles in Statistical Mechanics – Developed with Especial Reference to the Rational Foundation of Thermodynamics (C. Scribner’s Sons, New York, 1902); (Yale University Press, New Haven, 1948; OX Bow Press, Woodbridge, Connecticut, 1981)

  5. O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, Oxford 1970), p. 167

  6. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. M. Gell-Mann, C. Tsallis (eds.), Nonadditive Entropy – Interdisciplinary Applications (Oxford University Press, New York, 2004)

  8. C. Tsallis, Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009)

  9. U. Tirnakli, private communication (2014)

  10. S. Pressé, K. Ghosh, J. Lee, K.A. Dill, Phys. Rev. Lett. 111, 180604 (2013)

    Article  ADS  Google Scholar 

  11. C. Tsallis [arXiv:1404.1257v1] [cond-mat.stat-mech] (2014)

  12. E.P. Borges, Physica A 340, 95 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  13. L. Nivanen, A. Le Méhauté, Q.A. Wang, Rep. Math. Phys. 52, 437 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. C. Tsallis, L.J.L. Cirto, Eur. Phys. J. C 73, 1 (2013)

    Article  Google Scholar 

  15. M.R. Ubriaco, Phys. Lett. A 373, 2516 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. R. Hanel, S. Thurner, Europhys. Lett. 93, 20006 (2011)

    Article  ADS  Google Scholar 

  17. R. Hanel, S. Thurner, Europhys. Lett. 96, 50003 (2011)

    Article  ADS  Google Scholar 

  18. P. Tempesta, Phys. Rev. E 84, 021121 (2011)

    Article  ADS  Google Scholar 

  19. C. Tsallis, Fractals 03, 541 (1995)

    Article  Google Scholar 

  20. S. Abe, A.K. Rajagopal, Phys. Lett. A 337, 292 (2005)

    Article  MATH  ADS  Google Scholar 

  21. P. Jund, S.G. Kim, C. Tsallis, Phys. Rev. B 52, 50 (1995)

    Article  ADS  Google Scholar 

  22. S.A. Cannas, F.A. Tamarit, Phys. Rev. B 54, R12661 (1996)

    Article  ADS  Google Scholar 

  23. L.C. Sampaio, M.P. de Albuquerque, F.S. de Menezes, Phys. Rev. B 55, 5611 (1997)

    Article  ADS  Google Scholar 

  24. C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998)

    Article  ADS  Google Scholar 

  25. F. Tamarit, C. Anteneodo, Phys. Rev. Lett. 84, 208 (2000)

    Article  ADS  Google Scholar 

  26. A. Giansanti, D. Moroni, A. Campa, Chaos, Solitons Fractals 13, 407 (2002)

    Article  MATH  ADS  Google Scholar 

  27. Ch. Binek, S. Polisetty, Xi He, T. Mukherjee, R. Rajesh, J. Redepenning, Phys. Rev. B 74, 054432 (2006)

    Article  ADS  Google Scholar 

  28. J.R. Grigera, Phys. Lett. A 217, 47 (1996)

    Article  ADS  Google Scholar 

  29. S. Curilef, C. Tsallis, Phys. Lett. A 264, 270 (1999)

    Article  ADS  Google Scholar 

  30. R.F.S. Andrade, S.T.R. Pinho, Phys. Rev. E 71, 026126 (2005)

    Article  ADS  Google Scholar 

  31. L.J.L. Cirto, V.R.V. Assis, C. Tsallis, Physica A 393, 286 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  32. C.A. Condat, J. Rangel, P.W. Lamberti, Phys. Rev. E 65, 026138 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  33. H.H.A. Rego, L.S. Lucena, L.R. da Silva, C. Tsallis, Physica A 266, 42 (1999)

    Article  ADS  Google Scholar 

  34. U.L. Fulco, L.R. da Silva, F.D. Nobre, H.H.A. Rego, L.S. Lucena, Phys. Lett. A 312, 331 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. G. Ruiz, C. Tsallis, Phys. Lett. A 376, 2451 (2012)

    Article  MATH  ADS  Google Scholar 

  36. H. Touchette, Phys. Lett. A 377, 436 (2013)

    Article  ADS  Google Scholar 

  37. G. Ruiz, C. Tsallis, Phys. Lett. A 377, 491 (2013)

    Article  ADS  Google Scholar 

  38. R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985)

  39. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  40. U. Tirnakli, C. Tsallis, M.L. Lyra, Eur. Phys. J. B 11, 309 (1999)

    Article  ADS  Google Scholar 

  41. G. Ruiz, C. Tsallis, Eur. Phys. J. B 67, 577 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. F. Baldovin, A. Robledo, Europhys. Lett. 60, 518 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Casati, C. Tsallis, F. Baldovin, Europhys. Lett. 72, 355 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  44. E.P. Borges, C. Tsallis, G.F.J. Ananos, P.M.C. de Oliveira, Phys. Rev. Lett. 89, 254103 (2002)

    Article  ADS  Google Scholar 

  45. G.F.J. Ananos, C. Tsallis, Phys. Rev. Lett. 93, 020601 (2004)

    Article  ADS  Google Scholar 

  46. F. Baldovin, A. Robledo, Phys. Rev. E 66, R045104 (2002)

    Article  ADS  Google Scholar 

  47. F. Baldovin, A. Robledo, Phys. Rev. E 69, 045202(R) (2004)

    Article  MathSciNet  ADS  Google Scholar 

  48. E. Mayoral, A. Robledo, Phys. Rev. E 72, 026209 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  49. E. Mayoral, A. Robledo, Physica A 340, 219 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  50. H.E. Stanley, Phys. Rev. 179, 570 (1969)

    Article  ADS  Google Scholar 

  51. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press Inc., London 1982) page 39. Freely available with author’s permission at http://physics.anu.edu.au/theophys/baxter_book.php

  52. M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)

    Article  ADS  Google Scholar 

  53. A. Campa, A. Giansanti, D. Moroni, Phys. Rev. E 62, 303 (2000)

    Article  ADS  Google Scholar 

  54. V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998)

    Article  ADS  Google Scholar 

  55. V. Latora, A. Rapisarda, S. Ruffo, Physica D 131, 38 (1999)

    Article  MATH  ADS  Google Scholar 

  56. V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001)

    Article  ADS  Google Scholar 

  57. A. Campa, A. Giansanti, D. Moroni, Physica A 305, 137 (2002)

    Article  MATH  ADS  Google Scholar 

  58. A. Pluchino, V. Latora, A. Rapisarda, Physica A 340, 187 (2004)

    Article  ADS  Google Scholar 

  59. A. Pluchino, V. Latora, A. Rapisarda, Physica D 193, 315 (2004)

    Article  MATH  ADS  Google Scholar 

  60. A. Pluchino, V. Latora, A. Rapisarda, Physica A 370, 573 (2006)

    Article  ADS  Google Scholar 

  61. Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004)

    Article  ADS  Google Scholar 

  62. L.G. Moyano, C. Anteneodo, Phys. Rev. E 74, 021118 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  63. A. Pluchino, A. Rapisarda, C. Tsallis, Physica A 387, 3121 (2008)

    Article  ADS  Google Scholar 

  64. W. Ettoumi, M.-C. Firpo, Phys. Rev. E 87, 030102 (2013)

    Article  ADS  Google Scholar 

  65. A. Pluchino, A. Rapisarda, C. Tsallis, Europhys. Lett. 80, 26002 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  66. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  67. P.-H. Chavanis, A. Campa, Eur. Phys. J. B 76, 581 (2010)

    Article  MATH  ADS  Google Scholar 

  68. A. Campa, P.-H. Chavanis, Eur. Phys. J. B 86, 1 (2013)

    Article  MathSciNet  Google Scholar 

  69. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. F. Caruso, C. Tsallis, Phys. Rev. E 78, 021102 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  72. A. Saguia, M.S. Sarandy, Phys. Lett. A 374, 3384 (2010)

    Article  MATH  ADS  Google Scholar 

  73. S.W. Hawking [arXiv:1401.5761v1] [hep-th] (2014)

  74. Z. Merali, Nature News 24 January (2014)

  75. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  76. S.W. Hawking, Phys. Rev. D 13, 191 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  77. J.D. Bekenstein, Contemp. Phys. 45, 31 (2004)

    Article  ADS  Google Scholar 

  78. S.N. Solodukhin, Living Rev. Relativity 14, 8 (2011)

    Article  ADS  Google Scholar 

  79. S. Das, S. Shankaranarayanan, Phys. Rev. D 73, 121701 (2006)

    Article  ADS  Google Scholar 

  80. R. Brustein, M.B. Einhorn, A. Yarom, J. High Energy Phys. 2006, 098 (2006)

    Article  MathSciNet  Google Scholar 

  81. S. Kolekar, T. Padmanabhan, Phys. Rev. D 83, 064034 (2011)

    Article  ADS  Google Scholar 

  82. N. Komatsu, S. Kimura, Phys. Rev. D 88, 083534 (2013)

    Article  ADS  Google Scholar 

  83. N. Komatsu, S. Kimura, Phys. Rev. D 89, 123501 (2014)

    Article  ADS  Google Scholar 

  84. M.S. Ribeiro, C. Tsallis, F.D. Nobre, Phys. Rev. E 88, 052107 (2013)

    Article  ADS  Google Scholar 

  85. A regularly updated bibliography can be seen at http://tsallis.cat.cbpf.br/biblio.htm

  86. C. Tsallis, Contemp. Phys. 55, 179 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Tsallis or L.J.L. Cirto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsallis, C., Cirto, L. Thermodynamics is more powerful than the role to it reserved by Boltzmann-Gibbs statistical mechanics. Eur. Phys. J. Spec. Top. 223, 2161–2175 (2014). https://doi.org/10.1140/epjst/e2014-02256-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02256-1

Keywords

Navigation