Skip to main content
Log in

Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Akaev, V. Sadovnichy, A. Korotayev, Eur. Phys. J. Special Topics 205, 355 (2012)

    Article  ADS  Google Scholar 

  2. J.M. Barnola, M. Anklin, J. Porcheron, D. Raynaud, J. Schwander, B. Stauffer, Tellus B 47(1–2), 264 (1995)

    Article  ADS  Google Scholar 

  3. R. Biggs, S.R. Carpenter, W.A. Brock, Proc. Natl. Acad. Sci. USA 106(3), 826 (2009)

    Article  ADS  Google Scholar 

  4. J.G. Canadell, C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, G. Marland, Proc. Natl. Acad. Sci. 104(47) 18866 (2007)

    Article  ADS  Google Scholar 

  5. M.R. Chertow, J. Industr. Ecol. 4(4), 13 (2000)

    Article  Google Scholar 

  6. C.W. Cobb, P.H. Douglas, Amer. Econ. Rev. 18(1), 139 (1928)

    Google Scholar 

  7. V. Dakos, M. Scheffer, E.H. van Nes, V. Brovkin, V. Petoukhov, H. Held, Proc. Natl. Acad. Sci. USA 105(38), 14308 (2008)

    Article  ADS  Google Scholar 

  8. J.M. Drake, B.D. Griffen, Nature 456(September), 456 (2010)

    Article  ADS  Google Scholar 

  9. T. Garrett, Climatic Change 104(3), 437 (2011)

    Article  Google Scholar 

  10. S. Gluzman, D. Sornette, Phys. Rev. E 6601(016134), U315 (2002)

    MathSciNet  Google Scholar 

  11. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Perseus Publishing, 1992)

  12. A. Goriely, J. Differen. Eqns. 161(2), 422 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. C.A.S. Hall, J.W. Day, Jr., Amer. Scientist 97, 230 (2009)

    Article  Google Scholar 

  14. K. Ide, D. Sornette, Physica A 307(1–2), 63 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. A. Johansen, D. Sornette, Physica A: Stat. Mech. Appl. 294(3-4), 465 (2001)

    Article  MATH  ADS  Google Scholar 

  16. A. Korotayev, J. World-Syst. Res. 11(1), 79 (2005)

    Google Scholar 

  17. A. Korotayev, A.S. Malkov, D. Khaltourina, Introduction to Social Macrodynamics: Secular Cycles and Millennial Trends (URSS, 2006)

  18. M. Kremer, Q. J. Econ. 108, 681 (1993)

    Article  Google Scholar 

  19. D.H. Meadows, The Limits to Growth; a Report for the Club of Rome’s Project on the Predicament of Mankind (Universe Books, 1972)

  20. Organisation for Economic Co-operation and Development, World Energy Outlook 2011

  21. R. Pielke, T. Wigley, C. Green, Nature 452(7187), 531 (2008)

    Article  ADS  Google Scholar 

  22. M.R. Raupach, J.G. Canadell, C. Le Quéré, Biogeosci. Discuss. 5(4), 2867 (2008)

    Article  ADS  Google Scholar 

  23. J. Rockstrom, W. Steffen, K. Noone, A. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sorlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J.A. Foley, Nature 461(7263), 472 (2009)

    Article  ADS  Google Scholar 

  24. D. Romer, Advanced Macroeconomics, 2nd ed. (McGraw-Hill/Irwin, 2000)

  25. Royal Society and the US National Academy of Sciences, Climate Change: Evidence & Causes

  26. S.G. Sammis, D. Sornette, Proc. Natl. Acad. Sci. USA 99(Supp1), 2501 (2002)

    Article  ADS  Google Scholar 

  27. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, G. Sugihara, Nature 461(7260), 53 (2009)

    Article  ADS  Google Scholar 

  28. D. Sornette, Proc. Natl. Acad. Sci. USA 99(Supp1), 2522 (2002)

    Article  ADS  Google Scholar 

  29. D. Sornette, Why Stock Markets Crash (Critical Events in Complex Financial Systems), (Princeton University Press, 2003)

  30. D. Sornette, Critical Phenomena in Natural Sciences: Chaos, Fractals, Self-organization and Disorder: Concepts and Tools (Springer Series in Synergetics), 2nd ed. (Springer, 2006)

  31. P.A. Stephens, W.J. Sutherland, R.P. Freckleton, Oikos 87, 185 (1999)

    Article  Google Scholar 

  32. S.A. Umpleby, Population Env. 11(3), 159 (1990)

    Article  Google Scholar 

  33. P.-F. Verhulst, Mém. de l’Academie Royale des Sci. et Belles-Lettres de Bruxelles 18, 1 (1845)

    Google Scholar 

  34. P.-F. Verhulst, Mém. de l’Academie Royale des Sci. et Belles-Lettres de Bruxelles 20, 1 (1847)

    Google Scholar 

  35. H. von Foerster, P.M. Mora, L.W. Amiot, Science 132(3436), 1291 (1960)

    Article  ADS  Google Scholar 

  36. P.E. Waggoner, J.H. Ausubel, Proc. Natl. Acad. Sci. USA 99(12), 7860 (2002)

    Article  ADS  Google Scholar 

  37. S.R. Weart, The Discovery of Global Warming: Revised and Expanded Edition (New Histories of Science, Technology, and Medicine) (Harvard University Press, revised and expanded edition, 2008)

  38. V.I. Yukalov, E.P. Yukalova, D. Sornette, Physica D 238, 1752 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. V.I. Yukalov, E.P. Yukalova, D. Sornette, Eur. Phys. J. Special Topics 205, 313 (2012)

    Article  ADS  Google Scholar 

  40. V.I. Yukalov, E.P. Yukalova, D. Sornette, Physica D 241, 1270 (2012)

    Article  MATH  ADS  Google Scholar 

  41. V.I. Yukalov, E.P. Yukalova, D. Sornette, Int. J. Bifurc. Chaos 24(2), 1450021 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A.D. Hüsler or D. Sornette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hüsler, A., Sornette, D. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future. Eur. Phys. J. Spec. Top. 223, 2065–2085 (2014). https://doi.org/10.1140/epjst/e2014-02250-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02250-7

Keywords

Navigation