The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 1949–1957 | Cite as

Vectorial whispering gallery mode solvers based on straight waveguide modes

Regular Article WGM Theory
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities

Abstract

In this paper, whispering gallery mode solvers based on a set of corresponding straight waveguide modes are proposed. The solvers project whispering gallery modes onto a linear combination of straight waveguide modes through a cavity residual operator eigensolution formalism and direct straight waveguide expansion procedures. With these implementations, a perfectly matched layer can be imposed at the cavity computation window edges automatically and optical properties of plain and metal coated silica microtoroids can be analyzed from a novel viewpoint. Additionally, the techniques can be employed in cavity mode matching methods for the modelling of cavities that strongly scatter light.

Keywords

European Physical Journal Special Topic Cavity Mode Resonance Wavelength Perfectly Match Layer Mode Solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Braginsky, M. Gorodetsky, V. Ilchenko, Phys. Lett. A 137, 393 (1989)CrossRefADSGoogle Scholar
  2. 2.
    L. Collot, V. Lefèvre-Seguin, M. Brune, J.M. Raimond, S. Haroche, Europhys. Lett. 23, 327 (1993)CrossRefADSGoogle Scholar
  3. 3.
    M.L. Gorodetsky, A.A. Savchenkov, V.S. Ilchenko, Opt. Lett. 21, 453 (1996)CrossRefADSGoogle Scholar
  4. 4.
    K. Vahala, Nature 424, 839 (2003)CrossRefADSGoogle Scholar
  5. 5.
    V.R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, Appl. Phys. Lett. 101 043704 (2012)CrossRefADSGoogle Scholar
  6. 6.
    A. Matsko, V. Ilchenko, IEEE J. Select. Topics Quant. Electr. 12, 3 (2006)CrossRefGoogle Scholar
  7. 7.
    F. Vollmer, S. Arnold, Nat. Meth. 5, 591 (2008)CrossRefGoogle Scholar
  8. 8.
    V.R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, Nano Lett. 13, 3347 (2013)CrossRefADSGoogle Scholar
  9. 9.
    S.I. Shopova, R. Rajmangal, S. Holler, S. Arnold, Appl. Phys. Lett. 98, 243104 (2011)CrossRefADSGoogle Scholar
  10. 10.
    M. Santiago-Cordoba, S. Boriskina, F. Vollmer, M. Demirel, Appl. Phys. Lett. 99, 073701 (2011)CrossRefADSGoogle Scholar
  11. 11.
    T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S.E. Fraser, R.C. Flagan, K. Vahala, Proc. Nat. Acad. Sci. 108, 5976 (2011)CrossRefADSGoogle Scholar
  12. 12.
    W.D. Sacher, W.M.J. Green, S. Assefa, T. Barwicz, H. Pan, S.M. Shank, Y.A. Vlasov, J.K.S. Poon, Breaking the cavity linewidth limit of resonant optical modulators, arXiv (2012)Google Scholar
  13. 13.
    W.D. Sacher, J.K.S. Poon, Opt. Lett. 34, 3878 (2009)CrossRefADSGoogle Scholar
  14. 14.
    B. Min, T.J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman, A. Polman, Phys. Rev. A 70, 033803 (2004)CrossRefADSGoogle Scholar
  15. 15.
    T.J. Kippenberg, S.M. Spillane, D.K. Armani, K.J. Vahala, Opt. Lett. 29, 122 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Spillane, T.J. Kippenberg, K.J. Vahala, Nature 415, 621 (2002)CrossRefADSGoogle Scholar
  17. 17.
    T. Kippenberg, S. Spillane, B. Min, K. Vahala, IEEE J. Select. Topics Quant. Electr. 10, 1219 (2004)CrossRefGoogle Scholar
  18. 18.
    T. Lu, L. Yang, R.V.A. van Loon, A. Polman, K. J. Vahala, Opt. Lett. 34, 482 (2009)CrossRefADSGoogle Scholar
  19. 19.
    V. IlchenkoA. Matsko, IEEE J. Select. Topics Quant. Electr. 12, 15 (2006)CrossRefGoogle Scholar
  20. 20.
    D.W. Vernooy, A. Furusawa, N.P. Georgiades, V.S. Ilchenko, H.J. Kimble, Phys. Rev. A 57, R2293 (1998)CrossRefADSGoogle Scholar
  21. 21.
    H. Mabuchi, J. Ye, H. Kimble, Appl. Phys. B: Lasers Opt. 68, 1095 (1999)CrossRefADSGoogle Scholar
  22. 22.
    S.M. Spillane, T.J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble, Phys. Rev. A 71, 013817 (2005)CrossRefADSGoogle Scholar
  23. 23.
    H. RohksariK.J. Vahala, Opt. Lett. 30, 427 (2005)CrossRefADSGoogle Scholar
  24. 24.
    T.J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K.J. Vahala, Phys. Rev. Lett. 95, 033901 (2005)CrossRefADSGoogle Scholar
  25. 25.
    H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, IEEE J. Select. Topics Quant. Electr. 12, 96 (2006)CrossRefGoogle Scholar
  26. 26.
    H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, K. Vahala, Appl. Phys. Lett. 89, 261109 (2006)CrossRefADSGoogle Scholar
  27. 27.
    T. Carmon, M.C. Cross, K.J. Vahala, Phys. Rev. Lett. 98, 167203 (2007)CrossRefADSGoogle Scholar
  28. 28.
    K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, Light: Sci. Appl. 2 (2013)Google Scholar
  29. 29.
    S. Forstner, S. Prams, J. Knittel, E.D. van Ooijen, J.D. Swaim, G.I. Harris, A. Szorkovszky, W.P. Bowen, H. Rubinsztein-Dunlop, Phys. Rev. Lett. 108, 120801 (2012)CrossRefADSGoogle Scholar
  30. 30.
    X. Du, S. Vincent, T. Lu, Opt. Express 21, 22012 (2013)CrossRefADSGoogle Scholar
  31. 31.
    M.A.C. Shirazi, W. Yu, S. Vincent, T. Lu, Opt. Express 21, 30243 (2013)CrossRefADSGoogle Scholar
  32. 32.
    M. Krause, J. Lightwave Technol. 29, 691 (2011)CrossRefADSGoogle Scholar
  33. 33.
    M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007)CrossRefADSGoogle Scholar
  34. 34.
    B. Min, L. Yang, K. Vahala, Phys. Rev. A 76, 013823 (2007)CrossRefADSGoogle Scholar
  35. 35.
    D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976)CrossRefADSGoogle Scholar
  36. 36.
    A.W. SnyderJ.D. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983)Google Scholar
  37. 37.
    R. SchermerJ. Cole, J. Quant. Electr., IEEE 43, 899 (2007)Google Scholar
  38. 38.
    X. Du, S. Vincent, M. Faucher, M.-J. Picard, T. Lu, Opt. Express 22, 13507 (2014)CrossRefADSGoogle Scholar
  39. 39.
    H. Derudder, F. Olyslager, D. De Zutter, S. Van Den Berghe, Antennas Propag. IEEE Trans. 49, 185 (2001)CrossRefMATHADSGoogle Scholar
  40. 40.
    D. Armani, T. Kippenberg, S. Spillane, K. Vahala, Nature 421, 925 (2003)CrossRefADSGoogle Scholar
  41. 41.
    A. Melloni, F. Carniel, R. Costa, M. Martinelli, J. Lightwave Technol. 19, 571 (2001)Google Scholar
  42. 42.
    G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, Inc., 1991)Google Scholar
  43. 43.
    T. Lu, D. Yevick, J. Lightwave Technol. 21, 1793 (2003)CrossRefADSGoogle Scholar
  44. 44.
    T. Lu, D. Yevick, J. Lightwave Technol. 22, 1426 (2004)CrossRefADSGoogle Scholar
  45. 45.
    T. Lu, D.O. Yevick, J. Opt. Soc. Am. A 19, 1197 (2002)CrossRefADSGoogle Scholar
  46. 46.
    B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, Nature 457, 455 (2009)CrossRefADSGoogle Scholar
  47. 47.
    Y.F. Xiao, C.L. Zou, B.B. Li, Y. Li, C.H. Dong, Z.F. Han, Q. Gong, Phys. Rev. Lett. 105, 153902 (2010)CrossRefADSGoogle Scholar
  48. 48.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mat. 9, 193 (2010)CrossRefGoogle Scholar
  49. 49.
    J.D. Swaim, J. Knittel, W.P. Bowen, Appl. Phys. Lett. 99, 243109 (2011)CrossRefADSGoogle Scholar
  50. 50.

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations