Skip to main content
Log in

Electrohydrodynamic controlled assembly and fracturing of thin colloidal particle films confined at drop interfaces

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Particles can adsorb strongly at liquid interfaces due to capillary forces, which in practice can confine the particles to the interface. Here we investigate the electrohydrodynamic flow driven packing and deformation of colloidal particle layers confined at the surface of liquid drops. The electrohydrodynamic flow has a stagnation point at the drop equator, leading to assembly of particles in a ribbon shaped film. The flow is entirely controlled by the electric field, and we demonstrate that AC fields can be used to induce hydrodynamic “shaking” of the colloidal particle film. We find that the mechanical properties of the film is highly dependent on the particles: monodisperse polystyrene beads form packed granular monolayers which “liquefies” upon shaking, whereas clay mineral particles form cohesive films that fracture upon shaking. The results are expected to be relevant for understanding the mechanics and rheology of particle stabilized emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. van Blaaderen, M. Dijkstra, R. van Roij, A. Imhof, M. Kamp, B. Kwaadgras, T. Vissers, B. Liu, Eur. Phys. J. Special Topics 222, 2895 (2013)

    Article  ADS  Google Scholar 

  2. A.R.M. Verschueren, L.W.G. Stofmeel, P.J. Baesjou, M. van Delden, K.M.H. Lenssen, M. Mueller, G. Oversluizen, J.J. van Glabbeek, J.T.M. Osenga, R.M. Schuurbiers, J. Soc. Inform. Display 18, 1 (2010)

    Article  Google Scholar 

  3. D. Graham-Rowe, Nat. Photon. 1, 248 (2007)

    Article  ADS  Google Scholar 

  4. H. Lowen, Soft Matter 6, 3133 (2010)

    Article  ADS  Google Scholar 

  5. S. Nudurupati, M. Janjua, N. Aubry, P. Singh, Electrophoresis 29(5), 1164 (2008)

    Article  Google Scholar 

  6. S.R. Yeh, M. Seul, B.I. Shraiman, Nature 386, 57 (1997)

    Article  ADS  Google Scholar 

  7. P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg, K. Kjerstad, K. Hersvik, J.O. Fossum, Nat. Commun. 4, 2066 (2013)

    Article  ADS  Google Scholar 

  8. W.D. Ristenpart, P. Jiang, M.A. Slowik, C. Punckt, D.A. Saville, I.A. Aksay, Langmuir 24, 12172 (2008)

    Article  Google Scholar 

  9. W.D. Ristenpart, I.A. Aksay, D.A. Saville, Phys. Rev. E 69, 021405 (2004)

    Article  ADS  Google Scholar 

  10. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  11. J.S. Jenkins, M.C. Flickinger, O.D. Velev, Materials 6, 1803 (2013)

    Article  ADS  Google Scholar 

  12. T.P. Bigioni, X.M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, H.M. Jaeger, Nat. Mater. 5, 265 (2006)

    Article  ADS  Google Scholar 

  13. P. Born, A. Munoz, C. Cavelius, T. Kraus, Langmuir 28, 8300 (2012)

    Article  Google Scholar 

  14. S. Watanabe, Y. Mino, Y. Ichikawa, M.T. Miyahara, Langmuir 28, 12982 (2012)

    Article  Google Scholar 

  15. R. Bhardwaj, X.H. Fang, P. Somasundaran, D. Attinger, Langmuir 26, 7833 (2010)

    Article  Google Scholar 

  16. G. Taylor, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 291, 159 (1966)

    Article  ADS  Google Scholar 

  17. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  18. A.G. Marin, H. Gelderblom, D. Lohse, J.H. Snoeijer, Phys. Rev. Lett. 107 (2011)

  19. K. Chen, J. Cole, C. Conger, J. Draskovic, M. Lohr, K. Klein, T. Scheidemantel, P. Schiffer, Nature 442, 257 (2006)

    Article  ADS  Google Scholar 

  20. G. Chen, P. Tan, S. Chen, J. Huang, W. Wen, L. Xu, Phys. Rev. Lett. 110, 064502 (2013)

    Article  ADS  Google Scholar 

  21. R. Aveyard, B.P. Binks, J.H. Clint, Adv. Coll. Interf. Sci. 100, 503 (2003)

    Article  Google Scholar 

  22. C.H. Chang, L.C. Wang [arXiv:1009.4322v1] (2010)

  23. P.F. Salipante, P.M. Vlahovska, Phys. Fluids 22 (2010)

  24. G.R. Yi, D.J. Pine, S. Sacanna, J. Phys. Condens. Mat. 25, 193101 (2013)

    Article  ADS  Google Scholar 

  25. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)

    Article  ADS  Google Scholar 

  26. Z. Rozynek, A. Mikkelsen, P. Dommersnes, J.O. Fossum, Nat. Commun. 5, 3945 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Rozynek.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozynek, Z., Dommersnes, P., Mikkelsen, A. et al. Electrohydrodynamic controlled assembly and fracturing of thin colloidal particle films confined at drop interfaces. Eur. Phys. J. Spec. Top. 223, 1859–1867 (2014). https://doi.org/10.1140/epjst/e2014-02231-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02231-x

Keywords

Navigation