Pore dynamics in lipid membranes

Abstract

Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.L. Buraud, O. Noël, D. Ausserré, Langmuir 29, 8944 (2013)

    Article  Google Scholar 

  2. 2.

    M. Bally, et al., Ang. Chem. – Int. Ed. 51, 12020 (2012)

    Article  Google Scholar 

  3. 3.

    M.M. Lozano, et al., J. Amer. Chem. Soc. 135, 5620 (2013)

    Article  Google Scholar 

  4. 4.

    B. Ugarte-Uribe, Biochim. Biophys. Acta – General Subj. 1830, 4872 (2013)

    Article  Google Scholar 

  5. 5.

    A. Makky, et al., Biochim. Biophys. Acta – Biomembr. 1808, 656 (2011)

    Article  Google Scholar 

  6. 6.

    I. Czolkos, A. Jesorka, O. Orwar, Soft Matter 7, 4562 (2011)

    Article  ADS  Google Scholar 

  7. 7.

    I. Gözen, A. Jesorka, Anal. Chem. 84, 822 (2012)

    Article  Google Scholar 

  8. 8.

    P.L. McNeil, R.A. Steinhardt, J. Cell Biol. 137, 1 (1997)

    Article  Google Scholar 

  9. 9.

    P.L. McNeil, T. Kirchhausen, Nat. Rev. Molec. Cell Biol. 6, 499 (2005)

    Article  Google Scholar 

  10. 10.

    I. Gozen, et al., Soft Matter 8, 6220 (2012)

    Article  ADS  Google Scholar 

  11. 11.

    J. Rosenbluth, et al., GLIA. 54, 172 (2006)

    Article  Google Scholar 

  12. 12.

    K.N. Papanicolaou, M.M. Phillippo, K. Walsh, Amer. J. Physiol. – Heart Circ. Physiol. 303, 243 (2012)

    Article  Google Scholar 

  13. 13.

    I.W. Mattaj, Nat. Rev. Molec. Cell Biol. 5, 65 (2004)

    Article  Google Scholar 

  14. 14.

    Y. Tamura, K. Itoh, H. Sesaki, Cell. 145, 1158 (2011)

    Article  Google Scholar 

  15. 15.

    M.P. Maddugoda, et al., Cell Host Microb. 10, 464 (2011)

    Article  Google Scholar 

  16. 16.

    I. Gözen, et al., Nat. Mater. 9, 908 (2010)

    Article  ADS  Google Scholar 

  17. 17.

    A. Schroeder, J. Kost, Y. Barenholz, Chem. Phys. Lipids 162, 1 (2009)

    Article  Google Scholar 

  18. 18.

    J.M. Escoffre, et al., Molec. Biotechnol. 41, 286 (2009)

    Article  Google Scholar 

  19. 19.

    D. Wijesinghe, et al., Scientific Reports, 3 (2013)

  20. 20.

    C.L. Woldringh, BBA Sect. Nucl. Acids Protein Synth. 224, 288 (1970)

    Article  Google Scholar 

  21. 21.

    M. Bischofberger, M.R. Gonzalez, F.G. van der Goot, Curr. Opinion Cell Biol. 21, 589 (2009)

  22. 22.

    A. Chanturiya, et al., Biophys. J. 84, 1750 (2003)

    Article  ADS  Google Scholar 

  23. 23.

    C.G. Cranfield, et al., Biophys. J. 106, 182 (2014)

    Article  ADS  Google Scholar 

  24. 24.

    A.G. Pakhomov, et al., Biochem. Biophys. Res. Commun. 385, 181 (2009)

    Article  Google Scholar 

  25. 25.

    R. Reigada, Biochim. Biophys. Acta – Biomembr. 1838, 814 (2014)

    Article  Google Scholar 

  26. 26.

    Y. Levin, M.A. Idiart, Phys. a-Stat. Mech. Appl. 331, 571 (2004)

    Article  Google Scholar 

  27. 27.

    O. Sandre, L. Moreaux, F. Brochard-Wyart, Proc. Nat. Acad. Sci. United States of America 96, 10591 (1999)

    Article  ADS  Google Scholar 

  28. 28.

    E. Karatekin, et al., Biophys. J. 84, 1734 (2003)

    Article  ADS  Google Scholar 

  29. 29.

    E. Karatekin, O. Sandre, F. Brochard-Wyart, Polymer Int. 52, 486 (2003)

    Article  Google Scholar 

  30. 30.

    R.J. Ryham, F.S. Cohen, R. Eisenberg, Comm. Math. Sci. 10, 1273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. 31.

    F. Brochard-Wyart, P.G. De Gennes, O. Sandre, Phys. A: Stat. Mech. Appl. 278, 32 (2000)

    Article  Google Scholar 

  32. 32.

    V. Levadny, et al., Langmuir 29, 3848 (2013)

    Article  Google Scholar 

  33. 33.

    R.M. Hochmuth, J. Biomech. 33, 15 (2000)

    Article  Google Scholar 

  34. 34.

    Y. Sakuma, T. Taniguchi, M. Imai, Biophys. J. 99, 472 (2010)

    Article  ADS  Google Scholar 

  35. 35.

    L.G. Wu, et al., Ann. Rev. Physiol. 76, 301 (2014)

    Article  Google Scholar 

  36. 36.

    E. Karatekin, J.E. Rothman, Nat. Protocols 7, 903 (2012)

    Article  Google Scholar 

  37. 37.

    L.J. Mellander, et al., Scientific Reports, 4 (2014)

  38. 38.

    Y. Kozlovsky, L.V. Chernomordik, M.M. Kozlov, Biophys. J. 83, 2634 (2002)

    Article  ADS  Google Scholar 

  39. 39.

    J. Leng, F. Nallet, D. Roux, Eur. Phys. J. E. 4, 77 (2001)

    Article  Google Scholar 

  40. 40.

    C. Billerit, et al., Soft Matter 7, 9751 (2011)

    Article  ADS  Google Scholar 

  41. 41.

    L. Soubiran, et al., Europhys. Lett. 31, 243 (1995)

    Article  ADS  Google Scholar 

  42. 42.

    J.C. Shillcock, R. Lipowsky, Nat. Mater. 4, 225 (2005)

    Article  ADS  Google Scholar 

  43. 43.

    W.F.D. Bennett, N. Sapay, D.P. Tieleman, Biophys. J. 106, 210 (2014)

    Article  ADS  Google Scholar 

  44. 44.

    M. Schick, K. Katsov, M. Muller, Mol. Phys. 103, 3055 (2005)

    Article  ADS  Google Scholar 

  45. 45.

    X. Banquy, et al., Biochim. Biophys. Acta – Biomembr. 1818, 402 (2012)

    Article  Google Scholar 

  46. 46.

    O. Regev, R. Backov, C. Faure, Chem. Mater. 16, 5280 (2004)

    Article  Google Scholar 

  47. 47.

    E. Evans, E. Sackmann, J. Fluid Mech. 194, 553 (1988)

    Article  ADS  MATH  Google Scholar 

  48. 48.

    L. Durlofsky, J.F. Brady, Phys. Fluids 30, 3329 (1987)

  49. 49.

    J. Nissen, et al., Eur. Phys. J. B. 10, 335 (1999)

    Article  ADS  Google Scholar 

  50. 50.

    E.A. Evans, R.M. Hochmuth, Biophys. J. 16, 1 (1976)

    Article  Google Scholar 

  51. 51.

    T. Lobovkina, et al., Soft Matter 6, 268 (2010)

    Article  ADS  Google Scholar 

  52. 52.

    Y.A. Chizmadzhev, et al., Biophys. J. 78, 2241 (2000)

    Article  ADS  Google Scholar 

  53. 53.

    G.H. Zan, et al., Soft Matter 8, 10877 (2012)

    Article  ADS  Google Scholar 

  54. 54.

    A. Kunze, S. Svedhem, B. Kasemo, Langmuir 25, 5146 (2009)

    Article  Google Scholar 

  55. 55.

    F.S. Cohen, G.B. Melikyan, J. Membr. Biol. 199, 1 (2004)

    Article  Google Scholar 

  56. 56.

    M. Nishizawa, K. Nishizawa, Biophys. J. 104, 1038 (2013)

    Article  ADS  Google Scholar 

  57. 57.

    I. Gözen, et al., Lab. Chip. 13, 3822 (2013)

    Article  Google Scholar 

  58. 58.

    I. Gözen, et al., Soft Matter 9, 2787 (2013)

    Article  ADS  Google Scholar 

  59. 59.

    R.A. Oeckler, et al., Amer. J. Physiol. – Lung Cellu. Molec. Physiol. 299, L826 (2010)

    Article  Google Scholar 

  60. 60.

    K. Akashi, et al., Biophys. J. 74, 2973 (1998)

    Article  ADS  Google Scholar 

  61. 61.

    G.M. Homsy, Ann. Rev. Fluid Mech. 19, 271 (1987)

    Article  ADS  Google Scholar 

  62. 62.

    B. Sandnes, et al., Nat. Comm., 2 (2011)

  63. 63.

    P.G. Saffman, G. Taylor, Proc. Royal Soc. London Ser. a-Math. Phys. Sci. 245, 312 (1958)

  64. 64.

    P. McAkin, et al., Marine Petrol. Geol. 17, 777 (2000)

    Article  Google Scholar 

  65. 65.

    P. Fast, M.J. Shelley, J. Comput. Phys. 195, 117 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. 66.

    G. Lovoll, et al., Phys. Rev. E, 70 (2004)

  67. 67.

    R. Toussaint, et al., Europhys. Lett. 71, 583 (2005)

    Article  ADS  Google Scholar 

  68. 68.

    K.J. Maloy, et al., Phys. Rev. Lett. 68, 2161 (1992)

    Article  ADS  Google Scholar 

  69. 69.

    Y. Roiter, et al., Nano Lett. 8, 941 (2008)

    Article  ADS  Google Scholar 

  70. 70.

    E. Sharon, et al., Phys. Rev. Lett., 91 (2003)

  71. 71.

    B. Davidovitch, A. Levermann, I. Procaccia, Phys. Rev. E 62, R5919 (2000)

    Article  ADS  Google Scholar 

  72. 72.

    C.G. Zervas, S.L. Gregory, N.H. Brown, J. Cell Biol. 152, 1007 (2001)

    Article  Google Scholar 

  73. 73.

    Y. Kaneko, et al., J. Morphol. 273, 639 (2012)

    Article  Google Scholar 

  74. 74.

    A.S. Sechi, J. Wehland, J. Cell Sci. 113, 3685 (2000)

    Google Scholar 

  75. 75.

    C.M. Goodloe-Holland, E.J. Luna, J. Cell Biol. 99, 71 (1984)

    Article  Google Scholar 

  76. 76.

    B.B. Machta, et al., Biophys. J. 100, 1668 (2011)

    Article  ADS  Google Scholar 

  77. 77.

    F. Brochard-Wyart, et al., Proc. Nat. Acad. Sci. United States of America 103, 7660 (2006)

    Article  ADS  Google Scholar 

  78. 78.

    P.A. Pullarkat, et al., Phys. Rev. Lett. 96, 048104 (2006)

    Article  ADS  Google Scholar 

  79. 79.

    S.A. Shkulipa, W.K. Den Otter, W.J. Briels, Phys. Rev. Lett., 96 (2006)

  80. 80.

    I. Czolkos, et al., Nano Lett. 7, 1980 (2007)

    Article  ADS  Google Scholar 

  81. 81.

    W.K. Den Otter, S.A. Shkulipa, Biophys. J. 93, 423 (2007)

    Article  ADS  Google Scholar 

  82. 82.

    R. Jahn, R.H. Scheller, Nat. Rev. Molec. Cell Biol. 7, 631 (2006)

    Article  Google Scholar 

  83. 83.

    A. Engel, P. Walter, J. Cell Biol. 183, 181 (2008)

    Article  Google Scholar 

  84. 84.

    A.M.S. Cardoso, et al., Biochim. Biophys. Acta – Biomembr. 1818, 877 (2012)

    Article  Google Scholar 

  85. 85.

    P. Martínez, A. Morros, Front. Biosci. J. Virtual Libr. 1, d103 (1996)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Gozen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gozen, I., Dommersnes, P. Pore dynamics in lipid membranes. Eur. Phys. J. Spec. Top. 223, 1813–1829 (2014). https://doi.org/10.1140/epjst/e2014-02228-5

Download citation

Keywords

  • Porous Medium
  • European Physical Journal Special Topic
  • Soft Matter
  • Membrane Tension
  • Fusion Pore