The European Physical Journal Special Topics

, Volume 223, Issue 12, pp 2387–2409 | Cite as

Stability of power grids: An overview

  • Andrej GajdukEmail author
  • Mirko TodorovskiEmail author
  • Ljupco KocarevEmail author
Part of the following topical collections:
  1. Resilient Power Grids and Extreme Events


Transient stability and steady-state (small signal) stability in power girds are reviewed. Transient stability concepts are illustrated with simple examples; in particular, we consider three methods for computing region of attraction: time-simulations, extended Lyapunov function, and sum of squares optimization method. We discuss steady state stability in power systems, and present an example of a feedback control via a communication network for the 10 Unit 39 Bus New England Test system.


Power System Lyapunov Function European Physical Journal Special Topic Stable Equilibrium Point Transient Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.J. Wood, B.F. Wollenberg, Power generation, operation, and control (John Wiley & Sons, 2012)Google Scholar
  2. 2.
    P.W. Sauer, M. Pai, Power system dynamics and stability (Prentice Hall Upper Saddle River, NJ, 1998)Google Scholar
  3. 3.
    J. Machowski, J. Bialek, J. Bumby, Power system dynamics: stability and control (John Wiley & Sons, 2011)Google Scholar
  4. 4.
    F.P. Demello, C. Concordia, Power Apparatus and Systems, IEEE Trans. (4), 316 (1969)Google Scholar
  5. 5.
    J.L. Willems, M. Pandit, Systems, Man and Cybernetics, IEEE Trans. 1(4), (1971)Google Scholar
  6. 6.
    P. Kessel, H. Glavitsch, Power Delivery, IEEE Trans. 1(3), 346 (1986)CrossRefGoogle Scholar
  7. 7.
    P. Sauer, M. Pai, Power Systems, IEEE Trans. 5(4), 1374 (1990)CrossRefGoogle Scholar
  8. 8.
    P. Dash, S. Mishra, M. Salama, A. Liew, Power Delivery, IEEE Trans. 15(2), 472 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109(6), 064101 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Rohden, A. Sorge, D. Witthaut, M. Timme, arXiv preprint [arXiv:1305.1634] (2013)
  11. 11.
    F. Dörfler, M. Chertkov, F. Bullo, Proc. National Acad. Sci. 110(6), 2005 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9(2), 89 (2013)CrossRefGoogle Scholar
  13. 13.
    P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, et al., Power Systems, IEEE Trans. 19(3), 1387 (2004)CrossRefGoogle Scholar
  14. 14.
    Report by the federal network agency for electricity, gas, telecommunications, post and railways on the disturbance in the german and european power system on the 4th of november 2006,
  15. 15.
    J. Willems, J. Willems, Power Apparatus and Systems, IEEE Trans. (5), 795 (1970)Google Scholar
  16. 16.
    J. Willems, Automatic Control, IEEE Trans. 16(4), 332 (1971)CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Shackshaft, O. Symons, J. Hadwick, Electrical Engineers, Proc. Instit. 124(8), 715 (1977)CrossRefGoogle Scholar
  18. 18.
    J.J. Grainger, W.D. Stevenson, Power System Analysis, International edn. (McGraw-Hill, New York, 1994)Google Scholar
  19. 19.
    F. Dorfler, F. Bullo, Circuits and Systems I: Regular Papers, IEEE Trans. 60(1), 150 (2013)CrossRefMathSciNetGoogle Scholar
  20. 20.
    K. Padiyar, K. Ghosh, Int. J. Electr. Power Energy Syst. 11(1), 47 (1989)CrossRefGoogle Scholar
  21. 21.
    L. Dias, M. El-Hawary, Nonlinear parameter estimation experiments for static load modelling in electric power systems, in Generation, Transmission and Distribution, IEE Proc. C, Vol. 136 (IET, 1989), p. 68Google Scholar
  22. 22.
    A.R. Bergen, D.J. Hill, Power Apparatus and Systems, IEEE Trans. (1), 25 (1981)Google Scholar
  23. 23.
    T. Van Cutsem, M. Ribbens-Pavella, Structure preserving direct methods for transient stability analysis of power systems, in Decision and Control, 24th IEEE Conference, Vol. 24 (IEEE, 1985), p. 70Google Scholar
  24. 24.
    K. Padiyar, H. Sastry, Int. J. Electr. Power Energy Syst. 9(1), 9 (1987)CrossRefGoogle Scholar
  25. 25.
    M. Ribbens-Pavella, D. Ernst, D. Ruiz-Vega, Transient Stability of Power Systems: A Unified Approach to Assessment and Control, Vol. 581 (Springer, 2000)Google Scholar
  26. 26.
    M. Pai, Energy function analysis for power system stability (Springer, 1989)Google Scholar
  27. 27.
    A.-A. Fouad, V. Vittal, Power system transient stability analysis using the transient energy function method (Pearson Education, 1991)Google Scholar
  28. 28.
    M. Ribens-Pavella, P.G. Murthy, Transient Stability of Power Systems: Theory and Practice (John Wiley and Sons, 1994)Google Scholar
  29. 29.
    H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications (Wiley, 2011)Google Scholar
  30. 30.
    C.-C. Chu, H.-D. Chiang, Boundary properties of the BCU method for power system transient stability assessment, in Circuits and Systems (ISCAS), Proc. 2010 IEEE International Symposium (IEEE, 2010), p. 3453Google Scholar
  31. 31.
    H.-D. Chang, C.-C. Chu, G. Cauley, Proc. IEEE 83(11), 1497 (1995)CrossRefGoogle Scholar
  32. 32.
    M. Pai, Power system stability: analysis by the direct method of Lyapunov, Vol. 3 (North-Holland Publishing Company, 1981)Google Scholar
  33. 33.
    M. Ribbens-Pavella, F. Evans, Automatica 21(1), 1 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    R. Genesio, M. Tartaglia, A. Vicino, Automatic Control, IEEE Trans. 30(8), 747 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    R. Ortega, M. Galaz, A. Astolfi, Y. Sun, T. Shen, Automatic Control, IEEE Trans. 50(1), 60 (2005)CrossRefMathSciNetGoogle Scholar
  36. 36.
    N.G. Bretas, L.F. Alberto, Power Systems, IEEE Trans. 18(2), 769 (2003)CrossRefGoogle Scholar
  37. 37.
    G. Chesi, Automatica 45(6), 1536 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    G. Chesi, Domain of attraction: analysis and control via SOS programming (Springer, 2011)Google Scholar
  39. 39.
    J. Anderson, A. Papachristodoulou, Automatic Control, IEEE Trans. 57(6), 1516 (2012)CrossRefMathSciNetGoogle Scholar
  40. 40.
    M. Anghel, F. Milano, A. Papachristodoulou, Circuits and systems, Trans. 60(9), 155 (2013)MathSciNetGoogle Scholar
  41. 41.
    P. Aylett, Proceedings of the IEE-Part C: Monographs 105(8), 527 (1958)Google Scholar
  42. 42.
    M. Anghel, J. Anderson, A. Papachristodoulou, Stability analysis of power systems using network decomposition and local gain analysis, in Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid (IREP), IREP Symposium (IEEE, 2013), p. 1Google Scholar
  43. 43.
    A. Llamas, J. De La Ree Lopez, L. Mili, A. Phadke, J. Thorp, Power Systems, IEEE Trans. 10(1), 210 (1995)CrossRefGoogle Scholar
  44. 44.
    P. Kundur, G. Rogers, D. Wong, L. Wang, M. Lauby, Power Systems, IEEE Trans. 5(4), 1076 (1990)CrossRefGoogle Scholar
  45. 45.
    L. Wang, A. Semlyen, Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems, in Power Industry Computer Application Conference, 1989, PICA'89, Conference Papers (IEEE, 1989), p. 358Google Scholar
  46. 46.
    N. Yadaiah, N. Venkata Ramana, Int. J. Elect. Power Energy Syst. 29(4), 297 (2007)CrossRefGoogle Scholar
  47. 47.
    A.D. Dominguez-Garcia, Reliability modeling of cyber-physical electric power systems: A system-theoretic framework, in Power and Energy Society General Meeting, IEEE (IEEE, 2012), p. 1Google Scholar
  48. 48.
    J.P. Hespanha, IEE Proc. Control Theory Appl. 153(5), 520 (2006)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Y.C. Chen, A.D. Domínguez-García, Power Systems, IEEE Trans. 27(4), 1978 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Dhople, Y.C. Chen, L. DeVille, A.D. Dominguez-Garcia, Circuits and Systems I: Regular Papers, IEEE Trans. 60(13), 3341 (2012)MathSciNetGoogle Scholar
  51. 51.
    P. Hartman, Proc. Amer. Math. Soc. 14(4), 568 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    V. Venikov, V. Stroev, V. Idelchick, V. Tarasov, Power Apparatus and Systems, IEEE Trans. 94(3), 1034 (1975)CrossRefGoogle Scholar
  53. 53.
    A.D. Del Rosso, C.A. Cañizares, V.M. Dona, Power Systems, IEEE Trans. 18(4), 1487 (2003)CrossRefGoogle Scholar
  54. 54.
    H.G. Kwatny, A. Pasrija, L. Bahar, Circuits and Systems, IEEE Trans. 33(10), 981 (1986)CrossRefzbMATHGoogle Scholar
  55. 55.
    H. Li, Z. Han, Synchronization of power networks without and with communication infrastructures, in Smart Grid Communications (SmartGridComm), IEEE International Conference (IEEE, 2011), p. 463Google Scholar
  56. 56.
    T. Athay, R. Podmore, S. Virmani, Power Apparatus and Systems, IEEE Trans. (2), 573 (1979)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Macedonian Academy of Sciences and ArtsSkopjeMacedonia
  2. 2.Faculty of Electrical Engineering and Information TechnologiesSkopjeMacedonia
  3. 3.Macedonian Academy of Sciences and Arts, Skopje, Macedonia, Faculty of Computer Science and Engineering, Skopje, Macedonia, and Bio Circuit Institute, University of CaliforniaSan DiegoUSA

Personalised recommendations