The European Physical Journal Special Topics

, Volume 223, Issue 7, pp 1247–1257 | Cite as

Spontaneous nematic polarisation and deformation in active media

  • L. M. Pismen
  • M. H. Köpf
Regular Article Papers
Part of the following topical collections:
  1. Discussion and Debate: Active Matter - How do Kinetic Theories Relate to Macroscopic Descriptions?


We explore two minimal macroscopic continuous models with feedback interactions inducing spontaneous nematic polarisation and mechanical deformation of the active medium. In the model based on direct feedback between deformation and ordering, linear stability analysis predicts transition to a uniform deformed nematic state but ordering is frustrated in a constrained geometry. In the model mediated by an active or controlling species, transition to either stationary or wave patterns, depending on the sign of interaction coefficients, is predicted by linear analysis and confirmed by numerical simulations.


European Physical Journal Special Topic Linear Stability Analysis Actin Network Direct Feedback Macroscopic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Phys. Reports 449, 3 (2007)CrossRefADSGoogle Scholar
  2. 2.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, UK, 1993)Google Scholar
  3. 3.
    A.D. Rey, Soft Matter 6, 3402 (2010)CrossRefADSGoogle Scholar
  4. 4.
    M.H. Köpf, L.M. Pismen, Eur. Phys. J. E 36, 121 (2013)CrossRefGoogle Scholar
  5. 5.
    M.H. Köpf, L.M. Pismen, Soft Matter 9, 3727 (2013)CrossRefADSGoogle Scholar
  6. 6.
    M.H. Köpf, L.M. Pismen, Physica D 259, 48 (2013)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    T.J. Mitchison, G.T. Charras, L. Mahadevan, Seminars Cell Devel. Biol. 19, 215 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Radszuweit, S. Alonso, H. Engel, M. Bär, Phys. Rev. Lett. 110, 138102 (2013)CrossRefADSGoogle Scholar
  9. 9.
    M.L. Gardel, J.H. Shin, F.C. MacKintosh, L. Mahadevan, P. Matsudaira, D.A. Weitz, Science 304, 1301 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Y. Matsubayashi, M. Ebisuya, S. Honjoh, E. Nishida, Curr. Biol. 14, 731 (2004)CrossRefGoogle Scholar
  11. 11.
    R. Fernandez-Gonzalez, S. de Matos Simoes, J.-C. Röper, S. Eaton, J. Zallen, Developmental Cell 17, 736 (2009)CrossRefGoogle Scholar
  12. 12.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)CrossRefADSGoogle Scholar
  13. 13.
    J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition (Dover, New York, 2000)Google Scholar
  14. 14.
    W.H. Press, Numerical Recipes in C (Cambridge University Press, Cambridge, 1999)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex SystemsTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Département de Physique, Ecole Normale SupérieureCNRSParisFrance

Personalised recommendations