Skip to main content

Advertisement

Log in

Near QED regime of laser interaction with overdense plasmas

  • Regular Article
  • IZEST Science: Extreme Fields and Nonlinear QED
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Interaction of laser plulses with intensities up to 1025 W/cm2 with overdense plasma targets is investigated via three-dimensional particle-in-cell simulations. At these intensities, radiation of electrons in the laser field becomes important. Electrons transfer a significant fraction of their energy to γ-photons and obtain strong feedbacks due to radiation reaction (RR) force. The RR effect on the distribution of laser energies among three main species: electrons, ions and photons is studied. The RR and electron-positron pair creation are implemented by a QED model. As the laser intensity inreases, the ratio of laser energy coupled to electrons drops while the one for γ-photons reaches up to 35%. Two distinctive plasma density regimes of the high-density carbon target and low-density solid hydrogen target are identified from the laser energy partitions and angular distributions of photons. The power-laws of absorption efficiency versus laser intensity and the transition of photon divergence are revealed. These show enhanced generation of γ-photon beams with improved collimation in the relativistically transparent regime. A new effect of transverse trapping of electrons inside the laser field caused by the RR force is observed: electrons can be unexpectedly confined by the intense laser field when the RR force is comparable to the Lorentz force. Finally, the RR effect and different regions of photon emission in laser-foil interactions are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Extreme Light Infrastructure European Project, www.extreme-light-infrastructure.eu

  2. International Center for Zetta- Exawatt Science and Technology, www.izest.polytechnique.edu

  3. G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, Nat. Photon. 7, 258261 (2013)

    Article  Google Scholar 

  4. Exawatt Center for Extreme Light Studies, www.xcels.iapras.ru

  5. N.V. Elkina, A.M. Fedotov, I.Yu. Kostyukov, M.V. Legkov, N.B. Narozhny, E.N. Nerush, H . Ruhl, Phys. Rev. ST-AB. 14, 054401 (2011)

    ADS  Google Scholar 

  6. N.B. Narozhny, A.M. Fedotov [arXiv:1312.4705v1] (2013)

  7. A. Zhidkov, J. Koga, A. Sasaki, M. Uesaka, Phys. Rev. Lett. 88, 185002 (2002)

    Article  ADS  Google Scholar 

  8. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.R. Bell, Phys. Plasmas 20, 056701 (2013)

    Article  ADS  Google Scholar 

  9. S.V. Bulanov, T.Zh. Esirkepov, M. Kando, J.K. Kog, T. Nakamura, S.S. Bulanov, A.G. Zhidkov, Y. Kato, G. Korn [arXiv:1304.6519v1]

  10. I.V. Sokolov, N.M. Naumova, J.A. Nees, G.A. Mourou, V.P. Yanovsky, Phys. Plasmas 16, 093115 (2009)

    Article  ADS  Google Scholar 

  11. M. Tamburini, F. Pegoraro, A. DiPiazza, C.H. Keitel, T.V. Liseykina, A. Macchi, Nucl. Inst. Meth. Phys. Res. A 653, 181 (2011)

    Article  ADS  Google Scholar 

  12. M. Tamburini, T.V. Liseykina, F. Pegoraro, A. Macchi, Phys. Rev. E 85, 016407 (2012)

    Article  ADS  Google Scholar 

  13. R. Capdessus, E. d’Humières, V.T. Tikhonchuk, Phys. Rev. E 86, 036401 (2012)

    Article  ADS  Google Scholar 

  14. M. Chen, A. Pukhov, T.-Pu Yu, Z.-M. Sheng, Plasma Phys. Control. Fusion 53, 014004 (2011)

    Article  ADS  Google Scholar 

  15. N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Rev. Lett. 102, 025002 (2009)

    Article  ADS  Google Scholar 

  16. I. Kostyukov, S. Kiselev, A. Pukhov, Phys. Plasmas 10, 4818 (2003)

    Article  ADS  Google Scholar 

  17. R. Capdessus, E. d’Humières, V.T. Tikhonchuk, Phys. Rev. Lett. 110, 215003 (2013)

    Article  ADS  Google Scholar 

  18. F. Pegoraro, S.V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007)

    Article  ADS  Google Scholar 

  19. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  20. A. Pukhov, J. Plasma Phys. 61, 425 (1999)

    Article  ADS  Google Scholar 

  21. A.I. Nikishov, J. Sov. Laser Res. 6, 619 (1985)

    Article  Google Scholar 

  22. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998)

  23. V.I. Ritus, J. Sov. Laser Res. 6, 497 (1985)

    Article  Google Scholar 

  24. E.N. Nerush, I.Yu. Kostyukov, A.M. Fedotov, N.B. Narozhny, N.V. Elkina, H. Ruhl, Phys. Rev. Lett. 106, 035001 (2011)

    Article  ADS  Google Scholar 

  25. I.V. Sokolov, N.M. Naumova, J.A. Nees, G.A. Mourou, Phys. Rev. Lett. 105, 195005 (2010)

    Article  ADS  Google Scholar 

  26. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Phys. Rev. Lett. 108, 165006 (2012)

    Article  ADS  Google Scholar 

  27. M. Chen, E. Cormier-Michel, C.G.R. Geddes, D.L. Bruhwiler, L.L. Yu, E. Esarey, C.B. Schroeder, W.P. Leemans, J. Comp. Phys. 236, 220 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  29. J. Denavit, Phys. Rev. Lett. 69, 3052 (1992)

    Article  ADS  Google Scholar 

  30. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)

    Article  ADS  Google Scholar 

  31. E.N. Nerush, I.Yu. Kostyukov, L. Ji, A. Pukhov, Phys. Plasmas (accepted) (2014)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Pukhov, A., Nerush, E. et al. Near QED regime of laser interaction with overdense plasmas. Eur. Phys. J. Spec. Top. 223, 1069–1082 (2014). https://doi.org/10.1140/epjst/e2014-02158-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02158-2

Keywords

Navigation