Skip to main content
Log in

Extreme quantum field theory and particle physics with IZEST

  • Review
  • IZEST Science: Extreme Fields and Nonlinear QED
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The prospect of next-generation ultra-high-intensity laser sources has prompted recent renewed study of nonlinear QED processes, such as the Schwinger effect, in which the instability of the QED vacuum is probed by external fields. Experimental observation of these nonlinear QED effects would provide unprecedented controlled access to non-perturbative processes in quantum field theory under extreme conditions, which is of direct interest in particle physics and astrophysical applications. I summarize important theoretical issues, both conceptual and computational, related to these nonlinear QED effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics Of Strong Fields (Springer, Berlin, 1985)

  2. W. Dittrich, H. Gies, Springer Tracts Mod. Phys. 166, 1 (2000)

    Article  ADS  Google Scholar 

  3. A. Ringwald, Phys. Lett. B 510, 107 (2001)

    Article  ADS  Google Scholar 

  4. T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf, Opt. Commun. 267, 318 (2006)

    Article  ADS  Google Scholar 

  5. T. Heinzl, Int. J. Mod. Phys. A 27, 1260010 (2012)

    Article  ADS  Google Scholar 

  6. H. Gies, Eur. Phys. J. D 55, 311 (2009)

    Article  ADS  Google Scholar 

  7. G.V. Dunne, Eur. Phys. J. D 55, 327 (2009)

    Article  ADS  Google Scholar 

  8. R. Ruffini, G. Vereshchagin, S.-S. Xue, Phys. Rept. 487, 1 (2010)

    Article  ADS  Google Scholar 

  9. A. Di Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  10. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. W. Dittrich, M. Reuter, Effective Lagrangians In Quantum Electrodynamics, Lect. Notes Phys. 220, 1 (Springer, Berlin, 1985)

  12. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  13. G.V. Dunne, “Heisenberg-Euler effective Lagrangians: Basics and extensions,” Ian Kogan Memorial Collection, “From Fields to Strings: Circumnavigating Theoretical Physics”, edited by M. Shifman et al., Vol. 1 (World Scientific, 2005), p. 445

  14. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  15. E. Brézin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Article  ADS  Google Scholar 

  16. V.S. Popov, Sov. Phys. JETP 34, 709 (1972)

    ADS  Google Scholar 

  17. D.L. Burke, et al., Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  18. H. Hu, C. Muller, C.H. Keitel, Phys. Rev. Lett. 105, 080401 (2010)

    Article  ADS  Google Scholar 

  19. C. Harvey, T. Heinzl, A. Ilderton, Phys. Rev. A 79, 063407 (2009)

    Article  ADS  Google Scholar 

  20. J. Rau, B. Muller, Phys. Rept. 272, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. S.A. Smolyansky, G. Ropke, S.M. Schmidt, D. Blaschke, V.D. Toneev, A.V. Prozorkevich, “Dynamical derivation of a quantum kinetic equation for particle production in the Schwinger mechanism” [arXiv:hep-ph/9712377]

  22. Y. Kluger, E. Mottola, J.M. Eisenberg, Phys. Rev. D 58, 125015 (1998)

    Article  ADS  Google Scholar 

  23. R. Alkofer, M.B. Hecht, C.D. Roberts, S.M. Schmidt, D.V. Vinnik, Phys. Rev. Lett. 87, 193902 (2001)

    Article  ADS  Google Scholar 

  24. M. Ruf, G.R. Mocken, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 102, 080402 (2009)

    Article  ADS  Google Scholar 

  25. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 78, 045017 (2008)

    Article  ADS  Google Scholar 

  26. I. Bialynicki-Birula, P. Gornicki, J. Rafelski, Phys. Rev. D 44, 1825 (1991)

    Article  ADS  Google Scholar 

  27. F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D 82, 105026 (2010)

    Article  ADS  Google Scholar 

  28. S.P. Kim, D.N. Page, Phys. Rev. D 65, 105002 (2002)

    Article  ADS  Google Scholar 

  29. G.V. Dunne, C. Schubert, Phys. Rev. D 72, 105004 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. G.V. Dunne, Q.-h. Wang, H. Gies, C. Schubert, Phys. Rev. D 73, 065028 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. G.V. Dunne, Q.h. Wang, Phys. Rev. D 74, 065015 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. R.P. Feynman, Phys. Rev. 76, 749 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S.S. Bulanov, V.D. Mur, N.B. Narozhny, et al., Phys. Rev. Lett. 104, 220404 (2010)

    Article  ADS  Google Scholar 

  34. R. Schutzhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. G.V. Dunne, H. Gies, R. Schutzhold, Phys. Rev. D 80, 111301 (2009)

    Article  ADS  Google Scholar 

  36. A. Di Piazza, E. Lotstedt, A.I. Milstein, et al., Phys. Rev. Lett. 103, 170403 (2009)

    Article  ADS  Google Scholar 

  37. R.P. Feynman, Phys. Rev. 80, 440 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. C. Schubert, Phys. Rept. 355, 73 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. H. Gies, K. Klingmuller, Phys. Rev. D 72, 065001 (2005)

    Article  ADS  Google Scholar 

  40. D.D. Dietrich, G.V. Dunne, J. Phys. A: Math. Theor. 40, F825 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. C.K. Dumlu, G.V. Dunne, Phys. Rev. D 84, 125023 (2011)

    Article  ADS  Google Scholar 

  42. V.S. Popov, Usp. Fiz. Nauk 174, 921 (2004)

    Article  Google Scholar 

  43. V.S. Popov, Phys. Usp. 47, 855 (2004)

    Article  ADS  Google Scholar 

  44. P. Szriftgiser, D. Guéry-Odelin, M. Arndt, J. Dalibard, Phys. Rev. Lett. 77, 4 (1996)

    Article  ADS  Google Scholar 

  45. F. Lindner, et al., Phys. Rev. Lett. 95, 040401 (2005)

    Article  ADS  Google Scholar 

  46. F. Hebenstreit, R. Alkofer, G.V. Dunne, H. Gies, Phys. Rev. Lett. 102, 150404 (2009)

    Article  ADS  Google Scholar 

  47. F. Hebenstreit, R. Alkofer, G.V. Dunne, H. Gies, Int. J. Mod. Phys. A 25, 2171 (2010)

    Article  Google Scholar 

  48. C.K. Dumlu, G.V. Dunne, Phys. Rev. Lett. 104, 250402 (2010)

    Article  ADS  Google Scholar 

  49. C.K. Dumlu, G.V. Dunne, Phys. Rev. D 83, 065028 (2011)

    Article  ADS  Google Scholar 

  50. E. Akkermans, G.V. Dunne, Phys. Rev. Lett. 108, 030401 (2012)

    Article  ADS  Google Scholar 

  51. T. Oka, H. Aoki, “Nonequilibrium Quantum Breakdown in a Strongly Correlated Electron System”, in Quantum and Semi-classical Percolation and Breakdown in Disordered Solids, edited by A.K. Sen, K.K. Bardhan, B.K. Chakrabarti, Lecture Note Phys., Vol. 762 (Springer-Verlag, 2008) [arXiv:0803.0422]

  52. I. Walmsley, H. Rabitz, Phys. Today 56, 43 (2003)

    Article  Google Scholar 

  53. W. Zhu, J. Botina, H, Rabitz, J. Chem. Phys. 108, 1953 (1998)

    Article  ADS  Google Scholar 

  54. A. Markmann, G.V. Dunne, V.S. Batista, poster at Gordon conference, Quantum Control of Light & Matter (August 2011)

  55. C. Kohlfurst, M. Mitter, G. von Winckel, F. Hebenstreit, R. Alkofer, Phys. Rev. D 88, 045028 (2013)

    Article  ADS  Google Scholar 

  56. A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)

    Article  ADS  Google Scholar 

  57. N.V. Elkina, A.M. Fedotov, I.Y. Kostyukov, M.V. Legkov, N.B. Narozhny, E.N. Nerush, H. Ruhl, Phys. Rev. ST Accel. Beams 14, 054401 (2011)

    Article  ADS  Google Scholar 

  58. A.M. Fedotov, N.B. Narozhny, G. Mourou, G. Korn, Phys. Rev. Lett. 105, 080402 (2010)

    Article  ADS  Google Scholar 

  59. S.S. Bulanov, T.Z. Esirkepov, A.G.R. Thomas, J.K. Koga, S.V. Bulanov, Phys. Rev. Lett. 105, 220407 (2010)

    Article  ADS  Google Scholar 

  60. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 105, 220403 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunne, G. Extreme quantum field theory and particle physics with IZEST. Eur. Phys. J. Spec. Top. 223, 1055–1061 (2014). https://doi.org/10.1140/epjst/e2014-02156-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02156-4

Keywords

Navigation