The European Physical Journal Special Topics

, Volume 223, Issue 4, pp 707–720 | Cite as

The dynamics of co- and counter rotating coupled spherical pendula

  • B. Witkowski
  • P. Perlikowski
  • A. Prasad
  • T. Kapitaniak
Regular Article
Part of the following topical collections:
  1. Synchronization of Pendula Systems


The dynamics of co- and counter-rotating coupled spherical pendula (two lower pendula are mounted at the end of the upper pendulum) is considered. Linear mode analysis shows the existence of three rotating modes. The linear modes allow us to understand the nonlinear normal modes, which are visualized in frequency-energy plots. With the increase of energy in one mode we observe a symmetry breaking pitchfork bifurcation. In the second part of the paper we consider energy transfer between pendula having different energies. The results for co-rotating (all pendula rotate in the same direction) and counter-rotating motion (one of lower pendula rotates in the opposite direction) are presented. In general, the energy fluctuations in counter-rotating pendula are found to be higher than in the co-rotating case.


Periodic Solution European Physical Journal Special Topic High Energy Level Pitchfork Bifurcation Pendula System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Pikovsky, M. Rosenblum, J. Kurths (Cambridge University Press, 2001)Google Scholar
  2. 2.
    S.H. Strogatz, Physica D: Nonlinear Phenom. 143, 1 (2000)CrossRefMATHMathSciNetADSGoogle Scholar
  3. 3.
    Y. Kuramoto (Springer, 1984)Google Scholar
  4. 4.
    S. Sabarathinam, K. Thamilmaran, L. Borkowski, P. Perlikowski, P. Brzeski, A. Stefanski, T. Kapitaniak, Commun. Nonlinear Sci. Num. Simul. 18, 3098 (2013)CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Yanchuk, K. Schneider, Proceedings of Equadiff 2003 (World Sci., 2005), p. 494Google Scholar
  6. 6.
    A. Vakakis, O. Gendelman, L. Bergman, D. McFarland, G. Kerschen, Y. Lee, Vol. 156 (Springer, 2008)Google Scholar
  7. 7.
    G. Saxena, A. Prasad, R. Ramaswamy, Phys. Reports 521, 205 (2012)CrossRefADSGoogle Scholar
  8. 8.
    N.E. Wierschem, D.D. Quinn, S.A. Hubbard, M.A. Al-Shudeifat, D.M. McFarland, J. Luo, L.A. Fahnestock, B.F.S. Jr., A.F. Vakakis, L.A. Bergman, J. Sound Vib. 331, 5393 (2012)CrossRefADSGoogle Scholar
  9. 9.
    G. Rega, S. Lenci, B. Horton, M. Wiercigroch, E. Pavlovskaia, Int. J. Bif. Chaos 22, 1250100 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Chaos: An Interdisciplin. J. Nonlinear Sci. 21 (2011)Google Scholar
  11. 11.
    P. Brzeski, P. Perlikowski, S. Yanchuk, T. Kapitaniak, J. Sound Vib. 331, 5347 (2012)CrossRefADSGoogle Scholar
  12. 12.
    M.G. Olsson, Am. J. Phys. 46, 1118 (1978)CrossRefADSGoogle Scholar
  13. 13.
    M.G. Olsson, Am. J. Phys. 49, 531 (1981)CrossRefADSGoogle Scholar
  14. 14.
    R. Cushman, J.J. Duistermaat, Bull. (New Ser.) Am. Math. Soc. 19, 475 (1988)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    V. Guillemin, A. Uribe, Commun. Math. Phys. 122, 563 (1989)CrossRefMATHMathSciNetADSGoogle Scholar
  16. 16.
    S. Leyendecker, P. Betsch, P. Steinmann, Comput. Mech. 33, 174 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    P.H. Richter, H.R. Dullin, H. Waalkens, J. Wiersig, J. Phys. Chem. 100, 19124 (1996)CrossRefGoogle Scholar
  18. 18.
    T. Lee, M. Leok, N. Harris McClamroch, ArXiv e-prints [arXiv:1103.2822] (2011)
  19. 19.
    C.M. Bender, B.K. Berntson, D. Parker, E. Samuel, Am. J. Phys. 81, 173 (2013)CrossRefADSGoogle Scholar
  20. 20.
    H.C. Mayer, R. Krechetnikov, Phys. Rev. E 85, 046117 (2012)CrossRefADSGoogle Scholar
  21. 21.
    A. Steindl, H. Troger, Bifurcation: Analysis, Algorithms, Applications (Birkhauser Basel, 1987), p. 277Google Scholar
  22. 22.
    J.E. Marsden, J. Scheurle, Z. Ang. Math. Phys. ZAMP 44, 17 (1993)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    P. Chossat, N. Bou-Rabee, SIAM J. Appl. Dyn. Syst. 4, 1140 (2005)CrossRefMATHMathSciNetADSGoogle Scholar
  24. 24.
    S. Hu, E. Leandro, M. Santoprete, Reg. Chaotic Dyn. 17, 36 (2012)CrossRefMATHMathSciNetADSGoogle Scholar
  25. 25.
    S. Shaw, C. Pierre, J. Sound Vib. 164, 85 (1993)CrossRefMATHMathSciNetADSGoogle Scholar
  26. 26.
    G. Kerschen, M. Peeters, J.-C. Golinval, A.F. Vakakis, Mech. Syst. Signal Process. 23, 170 (2009)CrossRefADSGoogle Scholar
  27. 27.
    M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J.-C. Golinval, Mech. Syst. Signal Process. 23, 195 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • B. Witkowski
    • 1
  • P. Perlikowski
    • 1
  • A. Prasad
    • 2
  • T. Kapitaniak
    • 1
  1. 1.Division of DynamicsTechnical University of LodzLodzPoland
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations